Skip to main content

2017 | OriginalPaper | Buchkapitel

Standard Operation Procedure for Tropical Cyclone Vital Parameters over North Indian Ocean

verfasst von : M. Sharma, M. Mohapatra

Erschienen in: Tropical Cyclone Activity over the North Indian Ocean

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is a growing need for improvement in tropical cyclone (TC) vital parameters (Knaff 2011) in view of the requirements of numerical weather prediction (NWP) models and various stake holders. As the damage due to a TC is directly proportional to the square of the maximum sustained wind (MSW) and loss due to a TC is proportional to cube of MSW, the surface wind structure associated with a TC serves insurance agencies to assess the damage due to a TC. The disaster managers who prepare for the impact of a landfalling TC may use the wind field information as guidance as to where the most severe wind or surge damage may occur. The TC Vital parameters also serve as input to NWP models and storm surge models that are run prior to landfalling events to create synthetic vortex (Chourasia et al. 2013), as most of the NWP models fail to simulate accurately the location and intensity of the TC. The creation of synthetic vortex helps in improving the track and intensity forecast of the model. In the parametric storm surge prediction models, the surface wind structure in the quadrant base form alongwith the radius of maximum wind (RMW) and pressure drop (ΔP) at the centre are utilised to create the wind stress and hence predict the storm surge (Dube et al. 2013). In post-event cases, these wind structure data are utilised for diagnosis of TC and to better plan for future TC forecasts. Engineers and planners rely on historical TC information to determine long-term risks to facilities and infrastructure and to ensure the resilience of communities to potential disasters. Another most important use of this product is the determination of ship avoidance area over the sea due to a TC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chourasia, M, Ashrit, R.G. and George, J.P. (2013). Impact of cyclone bogusing and regional assimilation on tropical cyclone, track and intensity predictions, Mausam, 64, 135–148. Chourasia, M, Ashrit, R.G. and George, J.P. (2013). Impact of cyclone bogusing and regional assimilation on tropical cyclone, track and intensity predictions, Mausam, 64, 135–148.
Zurück zum Zitat Dube, S.K, Poulose, J. and Rao, A.D. (2013). Numerical simulation of storm surge associated with severe cyclonic storm in the Bay of Bengal during 2008–11. Monsoon, 64, 193–202. Dube, S.K, Poulose, J. and Rao, A.D. (2013). Numerical simulation of storm surge associated with severe cyclonic storm in the Bay of Bengal during 2008–11. Monsoon, 64, 193–202.
Zurück zum Zitat Dvorak, V.F. (1984). Tropical cyclone intensity analysis using satellite data. Technical Report (NOAA TR NESDIS 11), National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, 47 pp. Dvorak, V.F. (1984). Tropical cyclone intensity analysis using satellite data. Technical Report (NOAA TR NESDIS 11), National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, 47 pp.
Zurück zum Zitat Franklin, J.L, Black, M.L. and Valde, K. (2000). Eyewall wind profiles in hurricanes determined by GPS dropwindsondes. NOAA/NWS Report. Franklin, J.L, Black, M.L. and Valde, K. (2000). Eyewall wind profiles in hurricanes determined by GPS dropwindsondes. NOAA/NWS Report.
Zurück zum Zitat IMD (1976). Weather Radar Observations Manual. IMD. IMD (1976). Weather Radar Observations Manual. IMD.
Zurück zum Zitat IMD (2003). Cyclone Manual. IMD, New Delhi, India. IMD (2003). Cyclone Manual. IMD, New Delhi, India.
Zurück zum Zitat IMD (2013). Cyclone Warning in India: Standard Operation Procedure. IMD, New Delhi, India. IMD (2013). Cyclone Warning in India: Standard Operation Procedure. IMD, New Delhi, India.
Zurück zum Zitat Kalsi, S.R. (2002a). Use of satellite imagery in tropical cyclone intensity analysis and forecasting. India Meteorological Department, New Delhi, p 44. Kalsi, S.R. (2002a). Use of satellite imagery in tropical cyclone intensity analysis and forecasting. India Meteorological Department, New Delhi, p 44.
Zurück zum Zitat Knaff, J.A, DeMaria, M, Molenar, D.A, Sampson, C.R. and Seybold, M.G. (2011). An automated, objective, multi-satellite platform tropical cyclone surface wind analysis. Journal of Applied Meteorology and Climatology, 54, 624–642. Knaff, J.A, DeMaria, M, Molenar, D.A, Sampson, C.R. and Seybold, M.G. (2011). An automated, objective, multi-satellite platform tropical cyclone surface wind analysis. Journal of Applied Meteorology and Climatology, 54, 624–642.
Zurück zum Zitat Mishra, D.K. and Gupta, G.R. (1976). Estimates of maximum wind speed in tropical cyclones occurring in the Indian Seas. Indian Journal Of Meteorology and Geophysics, 27, 285–290. Mishra, D.K. and Gupta, G.R. (1976). Estimates of maximum wind speed in tropical cyclones occurring in the Indian Seas. Indian Journal Of Meteorology and Geophysics, 27, 285–290.
Zurück zum Zitat Mohapatra, M. and Sharma, M. (2015). Characteristics of Surface Wind Structure of Tropical Cyclones over the north Indian Ocean, JESS, accepted for publication. Mohapatra, M. and Sharma, M. (2015). Characteristics of Surface Wind Structure of Tropical Cyclones over the north Indian Ocean, JESS, accepted for publication.
Zurück zum Zitat Mohapatra M, Bandyopadhyay, B.K. and Tyagi, A. (2012). Best track parameters of tropical cyclones over the north Indian Ocean: A review. Natural Hazards, 63, 1285–1317.CrossRef Mohapatra M, Bandyopadhyay, B.K. and Tyagi, A. (2012). Best track parameters of tropical cyclones over the north Indian Ocean: A review. Natural Hazards, 63, 1285–1317.CrossRef
Zurück zum Zitat Raghavan, S. (1997). Radar observations of tropical cyclone. Mausam, 48, 169–188. Raghavan, S. (1997). Radar observations of tropical cyclone. Mausam, 48, 169–188.
Zurück zum Zitat Raghavan, S. (2013). Observational aspects including weather radar for tropical cyclone monitoring. Mausam, 64, 89–96. Raghavan, S. (2013). Observational aspects including weather radar for tropical cyclone monitoring. Mausam, 64, 89–96.
Zurück zum Zitat RSMC, New Delhi (2014). Report on cyclonic disturbances over the north Indian Ocean during 2013. IMD, New Delhi, India. RSMC, New Delhi (2014). Report on cyclonic disturbances over the north Indian Ocean during 2013. IMD, New Delhi, India.
Zurück zum Zitat RSMC, New Delhi (2015). Report on cyclonic disturbances over the north Indian Ocean during 2014. IMD, New Delhi, India. RSMC, New Delhi (2015). Report on cyclonic disturbances over the north Indian Ocean during 2014. IMD, New Delhi, India.
Metadaten
Titel
Standard Operation Procedure for Tropical Cyclone Vital Parameters over North Indian Ocean
verfasst von
M. Sharma
M. Mohapatra
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-40576-6_24