Skip to main content
Erschienen in: Advances in Manufacturing 2/2017

14.06.2017

State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics

verfasst von: Sergio Manzetti, Francesco Enrichi

Erschienen in: Advances in Manufacturing | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanomaterials composed of metals and metal alloys are the most valuable components in emerging micro- and nano-electronic devices and innovations to date. The composition of these nanomaterials, their quantum chemical and physical properties, and their production methods are in critical need of summarization, so that a complete state of the art of the present and future of nanotechnologies can be presented. In this review, we report on the most recent activities and results in the fields of spintronics, nanophotonics, and nanomagnetics, with particular emphasis on metallic nanoparticles in alloys and pure metals, as well as in organic combinations and in relation to carbon-based nanostructures. This review shows that the combinatory synthesis of alloys with rare metals, such as scandium, yttrium, and rare earths imparts valuable qualities to high-magnetic-field compounds, and provides unique properties with emphasis on nanoelectronic and computational components. In this review, we also shed light on the methods of synthesis and the background of spintronic, nanomagnetic, and nanophotonic materials, with applications in optics, diagnostics, nanoelectronics, and computational nanotechnology. The review is important for the industrial development of novel materials, and for summarizing both fabrication and manufacturing methods, as well as principles and functions of metallic nanoparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Trauzettel B, Bulaev DV, Loss D et al (2007) Spin qubits in graphene quantum dots. Nat Phys 3:192–196CrossRef Trauzettel B, Bulaev DV, Loss D et al (2007) Spin qubits in graphene quantum dots. Nat Phys 3:192–196CrossRef
2.
Zurück zum Zitat Zhu S, Zhang J, Qiao C et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860CrossRef Zhu S, Zhang J, Qiao C et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860CrossRef
3.
Zurück zum Zitat Pradhan A, Holloway T, Mundle R et al (2012) Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons. Appl Phys Lett 100:061127CrossRef Pradhan A, Holloway T, Mundle R et al (2012) Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons. Appl Phys Lett 100:061127CrossRef
4.
Zurück zum Zitat Park K, Lee M, Liu Y et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004CrossRef Park K, Lee M, Liu Y et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004CrossRef
5.
Zurück zum Zitat Gittins DI, Bethell D, Schiffrin DJ et al (2000) A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408:67–69CrossRef Gittins DI, Bethell D, Schiffrin DJ et al (2000) A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408:67–69CrossRef
6.
Zurück zum Zitat Huang Y, Duan X, Lieber CM (2005) Nanowires for integrated multicolor nanophotonics. Small 1:142–147CrossRef Huang Y, Duan X, Lieber CM (2005) Nanowires for integrated multicolor nanophotonics. Small 1:142–147CrossRef
7.
Zurück zum Zitat Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, NetherlandsCrossRef Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, NetherlandsCrossRef
8.
Zurück zum Zitat Wolf SA, Lu J, Stan MR et al (2010) The promise of nanomagnetics and spintronics for future logic and universal memory. Proc IEEE 98:2155–2168CrossRef Wolf SA, Lu J, Stan MR et al (2010) The promise of nanomagnetics and spintronics for future logic and universal memory. Proc IEEE 98:2155–2168CrossRef
9.
Zurück zum Zitat Awschalom DD, Flatté ME (2007) Challenges for semiconductor spintronics. Nat Phys 3:153–159CrossRef Awschalom DD, Flatté ME (2007) Challenges for semiconductor spintronics. Nat Phys 3:153–159CrossRef
10.
Zurück zum Zitat Wolf S, Awschalom D, Buhrman R et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495CrossRef Wolf S, Awschalom D, Buhrman R et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495CrossRef
11.
Zurück zum Zitat Mourachkine A, Yazyev O, Ducati C et al (2008) Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field. Nano Lett 8:3683–3687CrossRef Mourachkine A, Yazyev O, Ducati C et al (2008) Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field. Nano Lett 8:3683–3687CrossRef
12.
Zurück zum Zitat Ohtsu M, Kobayashi K, Kawazoe T et al (2002) Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J Sel Top Quantum Electron 8:839–862CrossRef Ohtsu M, Kobayashi K, Kawazoe T et al (2002) Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J Sel Top Quantum Electron 8:839–862CrossRef
13.
Zurück zum Zitat Qian F, Li Y, Gradecak S et al (2004) Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett 4(10):1975–1979CrossRef Qian F, Li Y, Gradecak S et al (2004) Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett 4(10):1975–1979CrossRef
14.
Zurück zum Zitat Žutić I, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323CrossRef Žutić I, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323CrossRef
15.
Zurück zum Zitat Ling X, Zhou X, Shu W et al (2013) Realization of tunable photonic spin hall effect by tailoring the Pancharatnam-Berry phase. Sci Rep 5:5557 Ling X, Zhou X, Shu W et al (2013) Realization of tunable photonic spin hall effect by tailoring the Pancharatnam-Berry phase. Sci Rep 5:5557
16.
Zurück zum Zitat Thibeault SA, Kang JH, Sauti G et al (2015) Nanomaterials for radiation shielding. MRS Bull 40:836–841CrossRef Thibeault SA, Kang JH, Sauti G et al (2015) Nanomaterials for radiation shielding. MRS Bull 40:836–841CrossRef
17.
Zurück zum Zitat Xu X, Yao W, Xiao D et al (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343–350CrossRef Xu X, Yao W, Xiao D et al (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343–350CrossRef
18.
Zurück zum Zitat McAlister S (1978) The hall effect in spin glasses. J Appl Phys 49:1616–1621CrossRef McAlister S (1978) The hall effect in spin glasses. J Appl Phys 49:1616–1621CrossRef
19.
Zurück zum Zitat Senthil T, Marston J, Fisher MP (1999) Spin quantum hall effect in unconventional superconductors. Phys Rev B 60(6):4245–4254CrossRef Senthil T, Marston J, Fisher MP (1999) Spin quantum hall effect in unconventional superconductors. Phys Rev B 60(6):4245–4254CrossRef
21.
Zurück zum Zitat Dyakonov M, Perel V (1971) Possibility of orienting electron spins with current. Sov J Exp Theor Phys Lett 13:467–469 Dyakonov M, Perel V (1971) Possibility of orienting electron spins with current. Sov J Exp Theor Phys Lett 13:467–469
22.
Zurück zum Zitat Girvin SM (1999) The quantum hall effect: novel excitations and broken symmetries. In: Comtet A, Jolicoeur T, Ouvry S et al (eds) Topological aspects of low dimensional systems. Springer, Berlin, pp 53–175 Girvin SM (1999) The quantum hall effect: novel excitations and broken symmetries. In: Comtet A, Jolicoeur T, Ouvry S et al (eds) Topological aspects of low dimensional systems. Springer, Berlin, pp 53–175
23.
Zurück zum Zitat Laughlin RB (1983) Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys Rev Lett 50:1395–1398CrossRef Laughlin RB (1983) Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys Rev Lett 50:1395–1398CrossRef
24.
Zurück zum Zitat Burr GW, Kurdi BN, Scott JC et al (2008) Overview of candidate device technologies for storage-class memory. IBM J Res Dev 52:449–464CrossRef Burr GW, Kurdi BN, Scott JC et al (2008) Overview of candidate device technologies for storage-class memory. IBM J Res Dev 52:449–464CrossRef
25.
Zurück zum Zitat Wang KL, Alzate JG, Amiri PK (2013) Low-power non-volatile spintronic memory: STT-RAM and beyond. J Phys Appl Phys 46(7):074003CrossRef Wang KL, Alzate JG, Amiri PK (2013) Low-power non-volatile spintronic memory: STT-RAM and beyond. J Phys Appl Phys 46(7):074003CrossRef
26.
Zurück zum Zitat Wang X, Keshtbod P, Wang Z et al (2015) Spin-orbitronics memory device with matching and self-reference functionality. IEEE Trans Magn 51:1–4 Wang X, Keshtbod P, Wang Z et al (2015) Spin-orbitronics memory device with matching and self-reference functionality. IEEE Trans Magn 51:1–4
27.
Zurück zum Zitat Jiang Z, Zhang Y, Tan YW et al (2007) Quantum hall effect in graphene. Solid State Commun 143(1–2):14–19CrossRef Jiang Z, Zhang Y, Tan YW et al (2007) Quantum hall effect in graphene. Solid State Commun 143(1–2):14–19CrossRef
28.
Zurück zum Zitat Zibouche N, Philipsen P, Kuc A et al (2014) Transition-metal dichalcogenide bilayers: switching materials for spintronic and valleytronic applications. Phys Rev B 90:125440CrossRef Zibouche N, Philipsen P, Kuc A et al (2014) Transition-metal dichalcogenide bilayers: switching materials for spintronic and valleytronic applications. Phys Rev B 90:125440CrossRef
29.
Zurück zum Zitat Chua C, Connolly M, Lartsev A et al (2014) Quantum hall effect and quantum point contact in bilayer-patched epitaxial graphene. Nano Lett 14:3369–3373CrossRef Chua C, Connolly M, Lartsev A et al (2014) Quantum hall effect and quantum point contact in bilayer-patched epitaxial graphene. Nano Lett 14:3369–3373CrossRef
30.
Zurück zum Zitat Klitzing KV (1995) Physics and application of the quantum hall effect. Phys B Condens Matter 204(1–4):111–116CrossRef Klitzing KV (1995) Physics and application of the quantum hall effect. Phys B Condens Matter 204(1–4):111–116CrossRef
31.
Zurück zum Zitat Kirchain R, Kimerling L (2007) A roadmap for nanophotonics. Nat Photonics 1:303–305CrossRef Kirchain R, Kimerling L (2007) A roadmap for nanophotonics. Nat Photonics 1:303–305CrossRef
32.
Zurück zum Zitat Cortes C, Newman W, Molesky S et al (2012) Quantum nanophotonics using hyperbolic metamaterials. J Opt 14(6):063001CrossRef Cortes C, Newman W, Molesky S et al (2012) Quantum nanophotonics using hyperbolic metamaterials. J Opt 14(6):063001CrossRef
33.
Zurück zum Zitat Shen Y, Friend CS, Jiang Y et al (2000) Nanophotonics: interactions, materials, and applications. J Phys Chem B 104:7577–7587CrossRef Shen Y, Friend CS, Jiang Y et al (2000) Nanophotonics: interactions, materials, and applications. J Phys Chem B 104:7577–7587CrossRef
34.
Zurück zum Zitat Callahan DM, Munday JN, Atwater HA (2012) Solar cell light trapping beyond the ray optic limit. Nano Lett 12:214–218CrossRef Callahan DM, Munday JN, Atwater HA (2012) Solar cell light trapping beyond the ray optic limit. Nano Lett 12:214–218CrossRef
35.
Zurück zum Zitat Yu Z, Raman A, Fan S (2010) Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci 107:17491–17496CrossRef Yu Z, Raman A, Fan S (2010) Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci 107:17491–17496CrossRef
36.
Zurück zum Zitat Mokkapati S, Catchpole K (2012) Nanophotonic light trapping in solar cells. J Appl Phys 112:101101CrossRef Mokkapati S, Catchpole K (2012) Nanophotonic light trapping in solar cells. J Appl Phys 112:101101CrossRef
37.
Zurück zum Zitat Teperik TV, De Abajo FG, Borisov A et al (2008) Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics 2:299–301CrossRef Teperik TV, De Abajo FG, Borisov A et al (2008) Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics 2:299–301CrossRef
38.
Zurück zum Zitat Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys Mater 11:65–74CrossRef Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys Mater 11:65–74CrossRef
39.
40.
Zurück zum Zitat Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRef Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRef
41.
Zurück zum Zitat Green MA, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photonics 6:130–132CrossRef Green MA, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photonics 6:130–132CrossRef
42.
Zurück zum Zitat Delacour C, Blaize S, Grosse P et al (2010) Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. Nano Lett 10:2922–2926CrossRef Delacour C, Blaize S, Grosse P et al (2010) Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. Nano Lett 10:2922–2926CrossRef
43.
Zurück zum Zitat Tsakalakos L, Balch J, Fronheiser J et al (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117CrossRef Tsakalakos L, Balch J, Fronheiser J et al (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117CrossRef
44.
Zurück zum Zitat Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(8):591 Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(8):591
45.
Zurück zum Zitat Ferrell T, Sharp S, Warmack R (1992) Progress in photon scanning tunneling microscopy (PSTM). Ultramicroscopy 42:408–415CrossRef Ferrell T, Sharp S, Warmack R (1992) Progress in photon scanning tunneling microscopy (PSTM). Ultramicroscopy 42:408–415CrossRef
46.
Zurück zum Zitat Paesler M, Moyer P, Jahncke C et al (1990) Analytical photon scanning tunneling microscopy. Phys Rev B 42:6750CrossRef Paesler M, Moyer P, Jahncke C et al (1990) Analytical photon scanning tunneling microscopy. Phys Rev B 42:6750CrossRef
47.
Zurück zum Zitat Bourillot E, Fornel FD, Goudonnet JP et al (1995) Imaging of test quartz gratings with a photon scanning tunneling microscope: experiment and theory. J Opt Soc Am A 12(8):1749–1764CrossRef Bourillot E, Fornel FD, Goudonnet JP et al (1995) Imaging of test quartz gratings with a photon scanning tunneling microscope: experiment and theory. J Opt Soc Am A 12(8):1749–1764CrossRef
48.
Zurück zum Zitat Carminati R, Greffet JJ (1995) Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function. Opt Commun 116:316–321CrossRef Carminati R, Greffet JJ (1995) Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function. Opt Commun 116:316–321CrossRef
49.
50.
Zurück zum Zitat Saywell A, Magnano G, Satterley CJ et al (2010) Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat Commun 1:75CrossRef Saywell A, Magnano G, Satterley CJ et al (2010) Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat Commun 1:75CrossRef
51.
Zurück zum Zitat del Carmen Giménez-López M, Moro F, La Torre A et al (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2:407CrossRef del Carmen Giménez-López M, Moro F, La Torre A et al (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2:407CrossRef
52.
Zurück zum Zitat Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1(3):198–210CrossRef Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1(3):198–210CrossRef
53.
Zurück zum Zitat Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793CrossRef Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793CrossRef
54.
Zurück zum Zitat Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611CrossRef Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611CrossRef
55.
Zurück zum Zitat Rokhvarger AE, Chigirinsky LA (2004) Design and nanofabrication of superconductor ceramic strands and customized leads. Int J Appl Ceram Technol 1:129–139CrossRef Rokhvarger AE, Chigirinsky LA (2004) Design and nanofabrication of superconductor ceramic strands and customized leads. Int J Appl Ceram Technol 1:129–139CrossRef
56.
Zurück zum Zitat Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRef Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRef
57.
Zurück zum Zitat Welser J, Wolf SA, Avouris P et al (2011) Applications: nanoelectronics and nanomagnetics. In: Nanotechnol. Res. Dir. Soc. Needs 2020. Springer, Berlin, pp 375–415 Welser J, Wolf SA, Avouris P et al (2011) Applications: nanoelectronics and nanomagnetics. In: Nanotechnol. Res. Dir. Soc. Needs 2020. Springer, Berlin, pp 375–415
58.
Zurück zum Zitat Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186CrossRef Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186CrossRef
59.
Zurück zum Zitat Manzetti S, Lu T (2013) Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires. RSC Adv 3:25881–25890CrossRef Manzetti S, Lu T (2013) Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires. RSC Adv 3:25881–25890CrossRef
60.
Zurück zum Zitat Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831–6847CrossRef Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831–6847CrossRef
61.
Zurück zum Zitat Vetrone F, Naccache R, Zamarron A et al (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4:3254–3258CrossRef Vetrone F, Naccache R, Zamarron A et al (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4:3254–3258CrossRef
62.
Zurück zum Zitat Bünzli JCG, Comby S, Chauvin AS et al (2007) New opportunities for lanthanide luminescence. J Rare Earths 25:257–274CrossRef Bünzli JCG, Comby S, Chauvin AS et al (2007) New opportunities for lanthanide luminescence. J Rare Earths 25:257–274CrossRef
63.
Zurück zum Zitat Bloss W, Sham L, Vinter V (1979) Interaction-induced transition at low densities in silicon inversion layer. Phys Rev Lett 43:1529CrossRef Bloss W, Sham L, Vinter V (1979) Interaction-induced transition at low densities in silicon inversion layer. Phys Rev Lett 43:1529CrossRef
64.
Zurück zum Zitat Cserti J, Dávid G (2006) Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys Rev B 74:172305CrossRef Cserti J, Dávid G (2006) Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys Rev B 74:172305CrossRef
65.
Zurück zum Zitat Manzetti S, Patek M (2016) The accurate wavefunction of the active space of the rhenium dimer resolved using the ab initio Brueckner coupled-cluster method. Struct Chem 27(4):1071–1080CrossRef Manzetti S, Patek M (2016) The accurate wavefunction of the active space of the rhenium dimer resolved using the ab initio Brueckner coupled-cluster method. Struct Chem 27(4):1071–1080CrossRef
66.
Zurück zum Zitat Tulapurkar A, Suzuki Y, Fukushima A et al (2005) Spin-torque diode effect in magnetic tunnel junctions. Nature 438:339–342CrossRef Tulapurkar A, Suzuki Y, Fukushima A et al (2005) Spin-torque diode effect in magnetic tunnel junctions. Nature 438:339–342CrossRef
67.
Zurück zum Zitat Ohno H (2010) A window on the future of spintronics. Nat Mater 9:952–954CrossRef Ohno H (2010) A window on the future of spintronics. Nat Mater 9:952–954CrossRef
68.
Zurück zum Zitat Locatelli N, Cros V, Grollier J (2014) Spin-torque building blocks. Nat Mater 13:11–20CrossRef Locatelli N, Cros V, Grollier J (2014) Spin-torque building blocks. Nat Mater 13:11–20CrossRef
69.
Zurück zum Zitat Mai C, Barrette A, Yu Y et al (2013) Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett 14:202–206CrossRef Mai C, Barrette A, Yu Y et al (2013) Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett 14:202–206CrossRef
70.
Zurück zum Zitat Zeng M, Feng Y, Liang G (2011) Graphene-based spin caloritronics. Nano Lett 11:1369–1373CrossRef Zeng M, Feng Y, Liang G (2011) Graphene-based spin caloritronics. Nano Lett 11:1369–1373CrossRef
71.
Zurück zum Zitat Myoung N, Seo K, Lee SJ et al (2013) Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures. ACS Nano 7:7021–7027CrossRef Myoung N, Seo K, Lee SJ et al (2013) Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures. ACS Nano 7:7021–7027CrossRef
72.
Zurück zum Zitat Cheng Y, Zhu Z, Tahir M et al (2013) Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. EPL Europhys Lett 102:57001CrossRef Cheng Y, Zhu Z, Tahir M et al (2013) Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. EPL Europhys Lett 102:57001CrossRef
73.
Zurück zum Zitat Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si I: formulation by extended zone effective mass theory. J Phys Soc Jpn 43:907–916CrossRef Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si I: formulation by extended zone effective mass theory. J Phys Soc Jpn 43:907–916CrossRef
74.
Zurück zum Zitat Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si II: electric break through. J Phys Soc Jpn 43:917–924CrossRef Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si II: electric break through. J Phys Soc Jpn 43:917–924CrossRef
75.
Zurück zum Zitat Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si III: enhancement of splittings by many-body effects. J Phys Soc Jpn 43:925–932CrossRef Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si III: enhancement of splittings by many-body effects. J Phys Soc Jpn 43:925–932CrossRef
76.
Zurück zum Zitat Behnia K (2012) Condensed-matter physics: polarized light boosts valleytronics. Nat Nanotechnol 7:488–489CrossRef Behnia K (2012) Condensed-matter physics: polarized light boosts valleytronics. Nat Nanotechnol 7:488–489CrossRef
77.
Zurück zum Zitat Ezawa M (2013) Spin valleytronics in silicene: quantum spin hall-quantum anomalous hall insulators and single-valley semimetals. Phys Rev B 87:155415CrossRef Ezawa M (2013) Spin valleytronics in silicene: quantum spin hall-quantum anomalous hall insulators and single-valley semimetals. Phys Rev B 87:155415CrossRef
78.
Zurück zum Zitat Ezawa M (2014) Valleytronics on the surface of a topological crystalline insulator: elliptic dichroism and valley-selective optical pumping. Phys Rev B 89:195413CrossRef Ezawa M (2014) Valleytronics on the surface of a topological crystalline insulator: elliptic dichroism and valley-selective optical pumping. Phys Rev B 89:195413CrossRef
79.
Zurück zum Zitat Nebel CE (2013) Valleytronics: electrons dance in diamond. Nat Mater 12:690–691CrossRef Nebel CE (2013) Valleytronics: electrons dance in diamond. Nat Mater 12:690–691CrossRef
80.
Zurück zum Zitat Maassen J, Ji W, Guo H (2010) Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett 11:151–155CrossRef Maassen J, Ji W, Guo H (2010) Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett 11:151–155CrossRef
81.
Zurück zum Zitat Novoselov K, Blake P, Katsnelson M (2001) Graphene: electronic properties. Encycl Mater Sci Technol 244:1–6 Novoselov K, Blake P, Katsnelson M (2001) Graphene: electronic properties. Encycl Mater Sci Technol 244:1–6
82.
Zurück zum Zitat Pronschinske A, Pedevilla P, Murphy CJ et al (2015) Enhancement of low-energy electron emission in 2D radioactive films. Nat Mater 14:904–907CrossRef Pronschinske A, Pedevilla P, Murphy CJ et al (2015) Enhancement of low-energy electron emission in 2D radioactive films. Nat Mater 14:904–907CrossRef
83.
Zurück zum Zitat Sundaram SK, Mazur E (2002) Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 1:217–224CrossRef Sundaram SK, Mazur E (2002) Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 1:217–224CrossRef
84.
Zurück zum Zitat Sanche L (2015) Cancer treatment: low-energy electron therapy. Nat Mater 14:861–863CrossRef Sanche L (2015) Cancer treatment: low-energy electron therapy. Nat Mater 14:861–863CrossRef
85.
Zurück zum Zitat Mattheiss LF (1973) Energy bands for 2H–Nb Se2 and 2H–Mo S2. Phys Rev Lett 30:784–787CrossRef Mattheiss LF (1973) Energy bands for 2H–Nb Se2 and 2H–Mo S2. Phys Rev Lett 30:784–787CrossRef
86.
Zurück zum Zitat Mattheiss LF (1966) Band structure and Fermi surface for rhenium. Phys Rev 151:450–464CrossRef Mattheiss LF (1966) Band structure and Fermi surface for rhenium. Phys Rev 151:450–464CrossRef
87.
Zurück zum Zitat Mattheiss LF (1973) Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719–3740CrossRef Mattheiss LF (1973) Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719–3740CrossRef
88.
Zurück zum Zitat Te Velde G, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931–967CrossRef Te Velde G, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931–967CrossRef
89.
Zurück zum Zitat Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070MATHCrossRef Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070MATHCrossRef
90.
Zurück zum Zitat Schrödinger E (1940) A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proceedings of the Royal Irish Academy, pp 9–16 Schrödinger E (1940) A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proceedings of the Royal Irish Academy, pp 9–16
91.
Zurück zum Zitat Tahir M, Schwingenschlögl U (2013) Valley polarized quantum hall effect and topological insulator phase transitions in silicene. Sci Rep 3:1075CrossRef Tahir M, Schwingenschlögl U (2013) Valley polarized quantum hall effect and topological insulator phase transitions in silicene. Sci Rep 3:1075CrossRef
92.
Zurück zum Zitat Kaloni TP, Singh N, Schwingenschlögl U (2014) Prediction of a quantum anomalous hall state in Co-decorated silicene. Phys Rev B 89(3):208–220CrossRef Kaloni TP, Singh N, Schwingenschlögl U (2014) Prediction of a quantum anomalous hall state in Co-decorated silicene. Phys Rev B 89(3):208–220CrossRef
93.
Zurück zum Zitat Liu CC, Feng W, Yao Y (2011) Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107(7):2989–2996CrossRef Liu CC, Feng W, Yao Y (2011) Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107(7):2989–2996CrossRef
94.
Zurück zum Zitat Zhang XL, Liu LF, Liu WM (2013) Quantum anomalous hall effect and tunable topological states in 3D transition metals doped silicene. Sci Rep 3:2908 Zhang XL, Liu LF, Liu WM (2013) Quantum anomalous hall effect and tunable topological states in 3D transition metals doped silicene. Sci Rep 3:2908
95.
Zurück zum Zitat Wu G, Lue NY, Chang L (2011) Graphene quantum dots for valley-based quantum computing: a feasibility study. Phys Rev B 84:195463CrossRef Wu G, Lue NY, Chang L (2011) Graphene quantum dots for valley-based quantum computing: a feasibility study. Phys Rev B 84:195463CrossRef
96.
Zurück zum Zitat Lee MK, Lue NY, Wen CK et al (2012) Valley-based field-effect transistors in graphene. Phys Rev B 86:165411CrossRef Lee MK, Lue NY, Wen CK et al (2012) Valley-based field-effect transistors in graphene. Phys Rev B 86:165411CrossRef
97.
Zurück zum Zitat Macià F, Kent AD, Hoppensteadt FC (2011) Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22:95301CrossRef Macià F, Kent AD, Hoppensteadt FC (2011) Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22:95301CrossRef
98.
Zurück zum Zitat Wang X, Chen Y, Xi H et al (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett 30:294–297CrossRef Wang X, Chen Y, Xi H et al (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett 30:294–297CrossRef
99.
Zurück zum Zitat Kainuma R, Imano Y, Ito W et al (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957–960CrossRef Kainuma R, Imano Y, Ito W et al (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957–960CrossRef
100.
Zurück zum Zitat Mañosa L, González-Alonso D, Planes A et al (2010) Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater 9:478–481CrossRef Mañosa L, González-Alonso D, Planes A et al (2010) Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater 9:478–481CrossRef
101.
Zurück zum Zitat Krenke T, Duman E, Acet M et al (2005) Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater 4:450–454CrossRef Krenke T, Duman E, Acet M et al (2005) Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater 4:450–454CrossRef
102.
Zurück zum Zitat Khalsa G, Stiles MD, Grollier J (2015) Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection. Appl Phys Lett 106:242402 Khalsa G, Stiles MD, Grollier J (2015) Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection. Appl Phys Lett 106:242402
103.
Zurück zum Zitat Locatelli N, Mizrahi A, Accioly A et al (2014) Noise-enhanced synchronization of stochastic magnetic oscillators. Phys Rev Appl 2:034009CrossRef Locatelli N, Mizrahi A, Accioly A et al (2014) Noise-enhanced synchronization of stochastic magnetic oscillators. Phys Rev Appl 2:034009CrossRef
104.
Zurück zum Zitat Keatley P, Gangmei P, Dvornik M et al (2013) Isolating the dynamic dipolar interaction between a pair of nanoscale ferromagnetic disks. Phys Rev Lett 110:187202CrossRef Keatley P, Gangmei P, Dvornik M et al (2013) Isolating the dynamic dipolar interaction between a pair of nanoscale ferromagnetic disks. Phys Rev Lett 110:187202CrossRef
105.
Zurück zum Zitat Barber D, Freestone I (1990) An investigation of the origin of the colour of the Lycurgus cup by analytical transmission electron microscopy. Archaeometry 32:33–45CrossRef Barber D, Freestone I (1990) An investigation of the origin of the colour of the Lycurgus cup by analytical transmission electron microscopy. Archaeometry 32:33–45CrossRef
106.
Zurück zum Zitat Webb JA, Bardhan R (2014) Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6:2502–2530CrossRef Webb JA, Bardhan R (2014) Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6:2502–2530CrossRef
107.
Zurück zum Zitat Anker JN, Hall WP, Lyandres O et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRef Anker JN, Hall WP, Lyandres O et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRef
108.
Zurück zum Zitat Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomed 7:429–445CrossRef Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomed 7:429–445CrossRef
109.
Zurück zum Zitat Sanders M, Lin Y, Wei J et al (2014) An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron 61:95–101CrossRef Sanders M, Lin Y, Wei J et al (2014) An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron 61:95–101CrossRef
110.
Zurück zum Zitat Xu LJ, Zong C, Zheng XS et al (2014) Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal Chem 86:2238–2245CrossRef Xu LJ, Zong C, Zheng XS et al (2014) Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal Chem 86:2238–2245CrossRef
111.
Zurück zum Zitat Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3CrossRef Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3CrossRef
112.
Zurück zum Zitat Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alex J Med 47:1–9CrossRef Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alex J Med 47:1–9CrossRef
113.
Zurück zum Zitat Carregal-Romero S, Ochs M, Rivera-Gil P et al (2012) NIR-light triggered delivery of macromolecules into the cytosol. J Controll Release 159:120–127CrossRef Carregal-Romero S, Ochs M, Rivera-Gil P et al (2012) NIR-light triggered delivery of macromolecules into the cytosol. J Controll Release 159:120–127CrossRef
114.
Zurück zum Zitat Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRef Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRef
115.
Zurück zum Zitat Lim S, Mar W, Matheu P et al (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:104309CrossRef Lim S, Mar W, Matheu P et al (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:104309CrossRef
116.
Zurück zum Zitat Zhang D, Yang X, Hong X et al (2015) Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Opt Quantum Electron 47:1421–1427CrossRef Zhang D, Yang X, Hong X et al (2015) Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Opt Quantum Electron 47:1421–1427CrossRef
117.
Zurück zum Zitat Martín-Rodríguez R, Geitenbeek R, Meijerink A (2013) Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J Am Chem Soc 135:13668–13671CrossRef Martín-Rodríguez R, Geitenbeek R, Meijerink A (2013) Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J Am Chem Soc 135:13668–13671CrossRef
118.
Zurück zum Zitat Mukherjee P, Sloan RF, Shade CM et al (2013) A postsynthetic modification of II–VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores. J Phys Chem C 117:14451–14460CrossRef Mukherjee P, Sloan RF, Shade CM et al (2013) A postsynthetic modification of II–VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores. J Phys Chem C 117:14451–14460CrossRef
119.
Zurück zum Zitat Chen CJ, Haik Y, Chatterjee J (2004) Nanomagnetics in biotechnology. In: Proceedings of the international workshop on materials analysis and processing in magnetic fields, Tallahassee, Florida, 17–19 March 2004 Chen CJ, Haik Y, Chatterjee J (2004) Nanomagnetics in biotechnology. In: Proceedings of the international workshop on materials analysis and processing in magnetic fields, Tallahassee, Florida, 17–19 March 2004
120.
Zurück zum Zitat Shamim N, Hong L, Hidajat K et al (2007) Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization. Colloids Surf B Biointerfaces 55:51–58CrossRef Shamim N, Hong L, Hidajat K et al (2007) Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization. Colloids Surf B Biointerfaces 55:51–58CrossRef
121.
Zurück zum Zitat Shamim N, Liang H, Hidajat K et al (2008) Adsorption, desorption, and conformational changes of lysozyme from thermosensitive nanomagnetic particles. J Colloid Interface Sci 320:15–21CrossRef Shamim N, Liang H, Hidajat K et al (2008) Adsorption, desorption, and conformational changes of lysozyme from thermosensitive nanomagnetic particles. J Colloid Interface Sci 320:15–21CrossRef
122.
Zurück zum Zitat Horng HE, Yang SY, Huang Y et al (2005) Nanomagnetic particles for SQUID-based magnetically labeled immunoassay. IEEE Trans Appl Supercond 15:668–671CrossRef Horng HE, Yang SY, Huang Y et al (2005) Nanomagnetic particles for SQUID-based magnetically labeled immunoassay. IEEE Trans Appl Supercond 15:668–671CrossRef
123.
Zurück zum Zitat Parekh K, Upadhyay R (2010) Static and dynamic magnetic properties of monodispersed Mn0.5Zn0.5Fe2O4 nanomagnetic particles. J Appl Phys 107:053907CrossRef Parekh K, Upadhyay R (2010) Static and dynamic magnetic properties of monodispersed Mn0.5Zn0.5Fe2O4 nanomagnetic particles. J Appl Phys 107:053907CrossRef
124.
Zurück zum Zitat Taketomi S (1998) Spin-glass-like complex susceptibility of frozen magnetic fluids. Phys Rev E 57:3073CrossRef Taketomi S (1998) Spin-glass-like complex susceptibility of frozen magnetic fluids. Phys Rev E 57:3073CrossRef
125.
Zurück zum Zitat Yoo SK, Lee SY (2000) Geometrical phase effects in biaxial nanomagnetic particles. Phys Rev B 62:5713–5718CrossRef Yoo SK, Lee SY (2000) Geometrical phase effects in biaxial nanomagnetic particles. Phys Rev B 62:5713–5718CrossRef
126.
Zurück zum Zitat Chakraverty S, Ghosh B, Kumar S et al (2006) Magnetic coding in systems of nanomagnetic particles. Appl Phys Lett 88:042501CrossRef Chakraverty S, Ghosh B, Kumar S et al (2006) Magnetic coding in systems of nanomagnetic particles. Appl Phys Lett 88:042501CrossRef
127.
Zurück zum Zitat Miller J, Kropf A, Zha Y et al (2006) The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J Catal 240:222–234CrossRef Miller J, Kropf A, Zha Y et al (2006) The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J Catal 240:222–234CrossRef
128.
Zurück zum Zitat Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRef Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRef
129.
Zurück zum Zitat El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264CrossRef El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264CrossRef
130.
Zurück zum Zitat Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRef Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRef
131.
Zurück zum Zitat Sreeprasad T, Nguyen P, Kim N et al (2013) Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett 13:4434–4441CrossRef Sreeprasad T, Nguyen P, Kim N et al (2013) Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett 13:4434–4441CrossRef
132.
Zurück zum Zitat Gawande MB, Shelke SN, Zboril R et al (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348CrossRef Gawande MB, Shelke SN, Zboril R et al (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348CrossRef
133.
Zurück zum Zitat Komarneni S, Li D, Newalkar B et al (2002) Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18:5959–5962CrossRef Komarneni S, Li D, Newalkar B et al (2002) Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18:5959–5962CrossRef
134.
Zurück zum Zitat Zhao Y, Zhu J, Hong J et al (2004) Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem 2004:4072–4080CrossRef Zhao Y, Zhu J, Hong J et al (2004) Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem 2004:4072–4080CrossRef
135.
Zurück zum Zitat Cheng W, Cheng HW (2009) Synthesis and characterization of cobalt nano-particles through microwave polyol process. AIChE J 55:1383–1389CrossRef Cheng W, Cheng HW (2009) Synthesis and characterization of cobalt nano-particles through microwave polyol process. AIChE J 55:1383–1389CrossRef
136.
Zurück zum Zitat Komarneni S, Roy R, Li Q (1992) Microwave-hydrothermal synthesis of ceramic powders. Mater Res Bull 27:1393–1405CrossRef Komarneni S, Roy R, Li Q (1992) Microwave-hydrothermal synthesis of ceramic powders. Mater Res Bull 27:1393–1405CrossRef
137.
Zurück zum Zitat Gao F, Lu Q, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860CrossRef Gao F, Lu Q, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860CrossRef
139.
Zurück zum Zitat Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026–3027CrossRef Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026–3027CrossRef
140.
Zurück zum Zitat Grzelczak M, Pérez-Juste J, Mulvaney P et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRef Grzelczak M, Pérez-Juste J, Mulvaney P et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRef
141.
Zurück zum Zitat Yin B, Ma H, Wang S et al (2003) Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J Phys Chem B 107:8898–8904CrossRef Yin B, Ma H, Wang S et al (2003) Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J Phys Chem B 107:8898–8904CrossRef
142.
Zurück zum Zitat Guo D, Li H (2004) Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun 6:999–1003CrossRef Guo D, Li H (2004) Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun 6:999–1003CrossRef
143.
Zurück zum Zitat Manzetti S, Andersen O, Garcia C et al (2016) Molecular simulation of carbon nanotubes as sorptive materials: sorption effects towards retene, perylene and cholesterol to 100 degrees Celsius and above. Mol Simul 14:1–10 Manzetti S, Andersen O, Garcia C et al (2016) Molecular simulation of carbon nanotubes as sorptive materials: sorption effects towards retene, perylene and cholesterol to 100 degrees Celsius and above. Mol Simul 14:1–10
144.
Zurück zum Zitat Manzetti S (2012) Chemical and electronic properties of polycyclic aromatic hydrocarbons: a review. Handb Polycycl Aromat Hydrocarb Chem Occur Health Issues 309–330 Manzetti S (2012) Chemical and electronic properties of polycyclic aromatic hydrocarbons: a review. Handb Polycycl Aromat Hydrocarb Chem Occur Health Issues 309–330
145.
Zurück zum Zitat Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688CrossRef Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688CrossRef
146.
Zurück zum Zitat Xing G, Wang D, Cheng CJ et al (2013) Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: towards oxide spinterfaces. Appl Phys Lett 103:022402CrossRef Xing G, Wang D, Cheng CJ et al (2013) Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: towards oxide spinterfaces. Appl Phys Lett 103:022402CrossRef
147.
Zurück zum Zitat Dutta DP, Mandal BP, Naik R et al (2013) Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J Phys Chem C 117:2382–2389CrossRef Dutta DP, Mandal BP, Naik R et al (2013) Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J Phys Chem C 117:2382–2389CrossRef
148.
Zurück zum Zitat Ghosh S, Yang R, Kaumeyer M et al (2014) Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing. ACS Appl Mater Interfaces 6:3099–3104CrossRef Ghosh S, Yang R, Kaumeyer M et al (2014) Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing. ACS Appl Mater Interfaces 6:3099–3104CrossRef
149.
Zurück zum Zitat Chen D, Yu Y, Huang F et al (2010) Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J Am Chem Soc 132:9976–9978CrossRef Chen D, Yu Y, Huang F et al (2010) Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J Am Chem Soc 132:9976–9978CrossRef
150.
Zurück zum Zitat Yang Y, Jin Y, He H et al (2010) Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J Am Chem Soc 132:13381–13394CrossRef Yang Y, Jin Y, He H et al (2010) Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J Am Chem Soc 132:13381–13394CrossRef
151.
Zurück zum Zitat Pal S, Bhunia A, Jana PP et al (2015) Microporous La–metal–organic framework (MOF) with large surface area. Chem Eur J 21:2789–2792CrossRef Pal S, Bhunia A, Jana PP et al (2015) Microporous La–metal–organic framework (MOF) with large surface area. Chem Eur J 21:2789–2792CrossRef
152.
Zurück zum Zitat Dey R, Bhattacharya B, Pachfule P et al (2014) Flexible dicarboxylate based pillar-layer metal organic frameworks: differences in structure and porosity by tuning the pyridyl based N, N′ linkers. Cryst Eng Commun 16:2305–2316CrossRef Dey R, Bhattacharya B, Pachfule P et al (2014) Flexible dicarboxylate based pillar-layer metal organic frameworks: differences in structure and porosity by tuning the pyridyl based N, N′ linkers. Cryst Eng Commun 16:2305–2316CrossRef
153.
Zurück zum Zitat Liu BH, Ding J, Zhong Z et al (2002) Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chem Phys Lett 358:96–102CrossRef Liu BH, Ding J, Zhong Z et al (2002) Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chem Phys Lett 358:96–102CrossRef
154.
Zurück zum Zitat Lowndes DH, Rouleau CM, Thundat T et al (1998) Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: size distributions and nanoscale structure. Appl Surf Sci 127:355–361CrossRef Lowndes DH, Rouleau CM, Thundat T et al (1998) Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: size distributions and nanoscale structure. Appl Surf Sci 127:355–361CrossRef
155.
Zurück zum Zitat Mafuné F, Kohno J, Takeda Y et al (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117CrossRef Mafuné F, Kohno J, Takeda Y et al (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117CrossRef
156.
Zurück zum Zitat Mafuné F, Kohno J, Takeda Y et al (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337CrossRef Mafuné F, Kohno J, Takeda Y et al (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337CrossRef
157.
Zurück zum Zitat Becker MF, Brock JR, Cai H et al (1998) Nanoparticles generated by laser ablation. Conf Lasers Electro-Opt 10(5):151–152 Becker MF, Brock JR, Cai H et al (1998) Nanoparticles generated by laser ablation. Conf Lasers Electro-Opt 10(5):151–152
158.
Zurück zum Zitat Sen P, Ghosh J, Abdullah A et al (2003) Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J Chem Sci 115:499–508CrossRef Sen P, Ghosh J, Abdullah A et al (2003) Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J Chem Sci 115:499–508CrossRef
159.
Zurück zum Zitat Andrievski R (2003) Modern nanoparticle research in Russia. J Nanoparticle Res 5:415–418CrossRef Andrievski R (2003) Modern nanoparticle research in Russia. J Nanoparticle Res 5:415–418CrossRef
160.
Zurück zum Zitat Goswami N, Sen P (2004) Water-induced stabilization of ZnS nanoparticles. Solid State Commun 132:791–794CrossRef Goswami N, Sen P (2004) Water-induced stabilization of ZnS nanoparticles. Solid State Commun 132:791–794CrossRef
161.
Zurück zum Zitat Phillips J, Perry WL, Kroenke WJ (2004) Method for producing metallic nanoparticles. U.S. Patent No. 6,689,192, 10 February 2004 Phillips J, Perry WL, Kroenke WJ (2004) Method for producing metallic nanoparticles. U.S. Patent No. 6,689,192, 10 February 2004
162.
Zurück zum Zitat Bica I (1999) Nanoparticle production by plasma. Mater Sci Eng B 68:5–9CrossRef Bica I (1999) Nanoparticle production by plasma. Mater Sci Eng B 68:5–9CrossRef
163.
Zurück zum Zitat Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127–133CrossRef Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127–133CrossRef
164.
Zurück zum Zitat Kaneko T, Hatakeyama R, Takahashi S (2013) Plasma process on ionic liquid substrate for morphology controlled nanoparticles. INTECH Open Access Publisher. Chapter 24 Kaneko T, Hatakeyama R, Takahashi S (2013) Plasma process on ionic liquid substrate for morphology controlled nanoparticles. INTECH Open Access Publisher. Chapter 24
165.
Zurück zum Zitat Graneau P (1983) First indication of Ampere tension in solid electric conductors. Phys Lett A 97:253–255CrossRef Graneau P (1983) First indication of Ampere tension in solid electric conductors. Phys Lett A 97:253–255CrossRef
166.
Zurück zum Zitat Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821CrossRef Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821CrossRef
167.
Zurück zum Zitat Sajti CL, Sattari R, Chichkov BN et al (2010) Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J Phys Chem C 114:2421–2427CrossRef Sajti CL, Sattari R, Chichkov BN et al (2010) Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J Phys Chem C 114:2421–2427CrossRef
168.
Zurück zum Zitat Abdolvand A, Khan SZ, Yuan Y et al (2008) Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser. Appl Phys A 91:365–368CrossRef Abdolvand A, Khan SZ, Yuan Y et al (2008) Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser. Appl Phys A 91:365–368CrossRef
169.
Zurück zum Zitat Wang X, Shephard JD, Dear FC et al (2008) Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J Am Ceram Soc 91:391–397CrossRef Wang X, Shephard JD, Dear FC et al (2008) Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J Am Ceram Soc 91:391–397CrossRef
170.
Zurück zum Zitat Borysiuk J, Grabias A, Szczytko J et al (2008) Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon 46:1693–1701CrossRef Borysiuk J, Grabias A, Szczytko J et al (2008) Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon 46:1693–1701CrossRef
171.
Zurück zum Zitat Scott JHJ, Majetich SA (1995) Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phys Rev B 52:12564–12571CrossRef Scott JHJ, Majetich SA (1995) Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phys Rev B 52:12564–12571CrossRef
172.
Zurück zum Zitat Delaunay JJ, Hayashi T, Tomita M et al (1997) CoPt-C nanogranular magnetic thin films. Appl Phys Lett 71:3427–3429CrossRef Delaunay JJ, Hayashi T, Tomita M et al (1997) CoPt-C nanogranular magnetic thin films. Appl Phys Lett 71:3427–3429CrossRef
173.
Zurück zum Zitat Li T, Yan H, Wang H et al (2005) CoPt/C nanogranular magnetic thin film. Int J Mod Phys B 19:2261–2271CrossRef Li T, Yan H, Wang H et al (2005) CoPt/C nanogranular magnetic thin film. Int J Mod Phys B 19:2261–2271CrossRef
174.
Zurück zum Zitat Lu Y, Zhu Z, Liu Z (2005) Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43:369–374CrossRef Lu Y, Zhu Z, Liu Z (2005) Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43:369–374CrossRef
175.
Zurück zum Zitat Hayashi T, Hirono S, Tomita M et al (1997) Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Cambridge University Press, Cambridge, p 33 Hayashi T, Hirono S, Tomita M et al (1997) Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Cambridge University Press, Cambridge, p 33
176.
Zurück zum Zitat Harris P, Tsang S (1998) A simple technique for the synthesis of filled carbon nanoparticles. Chem Phys Lett 293:53–58CrossRef Harris P, Tsang S (1998) A simple technique for the synthesis of filled carbon nanoparticles. Chem Phys Lett 293:53–58CrossRef
177.
Zurück zum Zitat Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35:637–659CrossRef Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35:637–659CrossRef
178.
Zurück zum Zitat Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRef Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRef
179.
Zurück zum Zitat Shankar SS, Ahmad A, Pasricha R et al (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRef Shankar SS, Ahmad A, Pasricha R et al (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRef
180.
Zurück zum Zitat Yang X, Li Q, Wang H et al (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanoparticle Res 12:1589–1598CrossRef Yang X, Li Q, Wang H et al (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanoparticle Res 12:1589–1598CrossRef
181.
Zurück zum Zitat Huang J, Lin L, Li Q et al (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47:6081–6090CrossRef Huang J, Lin L, Li Q et al (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47:6081–6090CrossRef
182.
Zurück zum Zitat Sharma B, Purkayastha DD, Hazra S et al (2014) Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett 116:94–97CrossRef Sharma B, Purkayastha DD, Hazra S et al (2014) Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett 116:94–97CrossRef
183.
Zurück zum Zitat Kumar B, Smita K, Cumbal L (2016) Biofabrication of nanogold from the flower extracts of Lantana camara. IET Nanobiotechnol 10:154–157CrossRef Kumar B, Smita K, Cumbal L (2016) Biofabrication of nanogold from the flower extracts of Lantana camara. IET Nanobiotechnol 10:154–157CrossRef
184.
Zurück zum Zitat Paul B, Bhuyan B, Purkayastha DD et al (2015) Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett 148:37–40CrossRef Paul B, Bhuyan B, Purkayastha DD et al (2015) Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett 148:37–40CrossRef
Metadaten
Titel
State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics
verfasst von
Sergio Manzetti
Francesco Enrichi
Publikationsdatum
14.06.2017
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 2/2017
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-017-0172-y

Weitere Artikel der Ausgabe 2/2017

Advances in Manufacturing 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.