Skip to main content
Erschienen in: Geotechnical and Geological Engineering 6/2018

03.05.2018 | State-of-the-Art Review

State-of-the-Art Modelling of Soil Behaviour Under Blast Loading

verfasst von: Gongda Lu, Mamadou Fall

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A comprehensive literature review has been carried out on existing models that characterize soil response under the impact of blast shock waves. Various models in the literature are reviewed and discussed in terms of their equations of state that account for the effect of high pressure, failure models that control the yield behaviour, and strength models that represent the effect of high strain-rates, along with a comparison of their advantages and limitations. Then, the application of different soil models to blast-induced liquefaction is elucidated and compared. Consequently, this review provides a comprehensive understanding of the fundamental and unique aspects of modelling soil response subjected to such transient impulsive loading on the grounds of increasing global interest in blast response of soils.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akiyoshi T, Fuchida K, Matsumoto H, Hyodo T, Fang HL (1993) Liquefaction analyses of sandy ground improved by sand compaction piles. Soil Dyn Earthq Eng 12:299–307CrossRef Akiyoshi T, Fuchida K, Matsumoto H, Hyodo T, Fang HL (1993) Liquefaction analyses of sandy ground improved by sand compaction piles. Soil Dyn Earthq Eng 12:299–307CrossRef
Zurück zum Zitat Al-Qasimi EMA, Charlie WA, Woeller DJ (2005) Canadian liquefaction experiment (CANLEX): blast–induced ground motion and pore pressure experiments. Geotech Test J 28(1):1–13 Al-Qasimi EMA, Charlie WA, Woeller DJ (2005) Canadian liquefaction experiment (CANLEX): blast–induced ground motion and pore pressure experiments. Geotech Test J 28(1):1–13
Zurück zum Zitat An J (2010). Soil behavior under blast loading. PhD thesis, University of Nebraska–Lincoln, Lincoln An J (2010). Soil behavior under blast loading. PhD thesis, University of Nebraska–Lincoln, Lincoln
Zurück zum Zitat An J, Tuan CY, Cheeseman BA, Gazonas GA (2011) Simulation of soil behavior under blast loading. Int J Geomech ASCE 11:323–334CrossRef An J, Tuan CY, Cheeseman BA, Gazonas GA (2011) Simulation of soil behavior under blast loading. Int J Geomech ASCE 11:323–334CrossRef
Zurück zum Zitat Aráoz G, Luccioni B (2015) Modeling concrete like materials under severe dynamic pressures. Int J Impact Eng 76:139–154CrossRef Aráoz G, Luccioni B (2015) Modeling concrete like materials under severe dynamic pressures. Int J Impact Eng 76:139–154CrossRef
Zurück zum Zitat Ashford SA, Rollins KM, Lane JD (2004) Blast-induced liquefaction for full-scale foundation testing. J Geotech Geoenviron Eng ASCE 8:798–806CrossRef Ashford SA, Rollins KM, Lane JD (2004) Blast-induced liquefaction for full-scale foundation testing. J Geotech Geoenviron Eng ASCE 8:798–806CrossRef
Zurück zum Zitat Awad AA (1990). A numerical model for blast–induced liquefaction using displacements–pore pressure formulations. PhD thesis, Colorado State University, Fort Collins Awad AA (1990). A numerical model for blast–induced liquefaction using displacements–pore pressure formulations. PhD thesis, Colorado State University, Fort Collins
Zurück zum Zitat Baron ML, Nelson I, Sandler I (1973) Influence of constitutive models on ground motion predictions. J Eng Mech Div 99:1181–1200 Baron ML, Nelson I, Sandler I (1973) Influence of constitutive models on ground motion predictions. J Eng Mech Div 99:1181–1200
Zurück zum Zitat Biot MA (1956a) Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. J Acoust Soc Am 28(2):168–178CrossRef Biot MA (1956a) Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. J Acoust Soc Am 28(2):168–178CrossRef
Zurück zum Zitat Biot MA (1956b) Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher-frequency range. J Acoust Soc Am 28(2):179–191CrossRef Biot MA (1956b) Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher-frequency range. J Acoust Soc Am 28(2):179–191CrossRef
Zurück zum Zitat Biot MA (1962a) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498CrossRef Biot MA (1962a) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498CrossRef
Zurück zum Zitat Biot MA (1962b) Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 34(5):1254–1264CrossRef Biot MA (1962b) Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 34(5):1254–1264CrossRef
Zurück zum Zitat Bloom F (2006) Constitutive models for wave propagation in soil. Appl Mech Rev 59:146–175CrossRef Bloom F (2006) Constitutive models for wave propagation in soil. Appl Mech Rev 59:146–175CrossRef
Zurück zum Zitat Bolton JM, Durnford DS, Charlie WA (1994) One–dimensional shock and quasi–static liquefaction of silt and sand. J Geotech Eng, ASCE 120:1874–1888CrossRef Bolton JM, Durnford DS, Charlie WA (1994) One–dimensional shock and quasi–static liquefaction of silt and sand. J Geotech Eng, ASCE 120:1874–1888CrossRef
Zurück zum Zitat Bretz TE (1990). Soil liquefaction resulting from blast-induced spherical stress waves. Final Rep. No. WL-TR-89-100, Weapons Laboratory, Air Force Systems Command Bretz TE (1990). Soil liquefaction resulting from blast-induced spherical stress waves. Final Rep. No. WL-TR-89-100, Weapons Laboratory, Air Force Systems Command
Zurück zum Zitat Busch CL, Aimone-martin CT, Tarefder RA (2016) Experimental evaluation and finite–element simulations of explosive airblast tests on clay soils. Int J Geomech ASCE 16:04015097CrossRef Busch CL, Aimone-martin CT, Tarefder RA (2016) Experimental evaluation and finite–element simulations of explosive airblast tests on clay soils. Int J Geomech ASCE 16:04015097CrossRef
Zurück zum Zitat Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute–Marne argillite. Phys Chem Earth 32:907–916CrossRef Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute–Marne argillite. Phys Chem Earth 32:907–916CrossRef
Zurück zum Zitat Casagrande A, Shannon WL (1948) Strength of soils under dynamic loads. Proc Am Soc Civ Eng 74(4):591–608 Casagrande A, Shannon WL (1948) Strength of soils under dynamic loads. Proc Am Soc Civ Eng 74(4):591–608
Zurück zum Zitat Charlie WA, Doehring DO (2007) Ground water table mounding, pore pressure, and liquefaction induced by explosions: engery-distance relations. Rev Geophys 45:1–9CrossRef Charlie WA, Doehring DO (2007) Ground water table mounding, pore pressure, and liquefaction induced by explosions: engery-distance relations. Rev Geophys 45:1–9CrossRef
Zurück zum Zitat Charlie WA, Doehring DO, Veyera GE, Hassen HA (1988). Blast induced liquefaction of soils: laboratory and field tests. Final Rep., USAF Office of Scientific Research, Bolling AFB, Washington, DC Charlie WA, Doehring DO, Veyera GE, Hassen HA (1988). Blast induced liquefaction of soils: laboratory and field tests. Final Rep., USAF Office of Scientific Research, Bolling AFB, Washington, DC
Zurück zum Zitat Charlie W, Veyera GE, Durnford DS, Doehring DO (1996) Porewater pressure increases in soil and rock from underground chemical and nuclear explosions. Eng Geol 43(4):225–236CrossRef Charlie W, Veyera GE, Durnford DS, Doehring DO (1996) Porewater pressure increases in soil and rock from underground chemical and nuclear explosions. Eng Geol 43(4):225–236CrossRef
Zurück zum Zitat Charlie WA, Bretz TE, Schure LA, Doehring DO (2013) Blast–induced pore pressure and liquefaction of saturated sand. J Geotech Geoenviron Eng ASCE 139(8):1308–1319CrossRef Charlie WA, Bretz TE, Schure LA, Doehring DO (2013) Blast–induced pore pressure and liquefaction of saturated sand. J Geotech Geoenviron Eng ASCE 139(8):1308–1319CrossRef
Zurück zum Zitat Chen WF, Baladi GY (1985) Soil plasticity: theory and implementation. Elsevier, Amsterdam Chen WF, Baladi GY (1985) Soil plasticity: theory and implementation. Elsevier, Amsterdam
Zurück zum Zitat DiMaggio FL, Sandler IS (1971) Material models for granular soils. J Eng Mech Div 97:935–950 DiMaggio FL, Sandler IS (1971) Material models for granular soils. J Eng Mech Div 97:935–950
Zurück zum Zitat Dolarevic S, Ibrahimbegovic A (2007) A modified three–surface elasto–plastic cap model and its numerical implementation. Comput Struct 85:419–430CrossRef Dolarevic S, Ibrahimbegovic A (2007) A modified three–surface elasto–plastic cap model and its numerical implementation. Comput Struct 85:419–430CrossRef
Zurück zum Zitat Dowding CH, Hryciw RD (1986) A laboratory study of blast densification of saturated sand. J Geotech Eng 112(2):187–199CrossRef Dowding CH, Hryciw RD (1986) A laboratory study of blast densification of saturated sand. J Geotech Eng 112(2):187–199CrossRef
Zurück zum Zitat Drake JL, Little CD (1983) Ground shock from penetrating conventional weapons. In: Proc symp on the interaction of non-nuclear munitions with structures, US Air Force Academy, Colorado Springs, pp 1–6 Drake JL, Little CD (1983) Ground shock from penetrating conventional weapons. In: Proc symp on the interaction of non-nuclear munitions with structures, US Air Force Academy, Colorado Springs, pp 1–6
Zurück zum Zitat Duvaut G, Lions JL (1972) Les Inequations en Mechanique et en Physique. Dunos, Paris Duvaut G, Lions JL (1972) Les Inequations en Mechanique et en Physique. Dunos, Paris
Zurück zum Zitat Feldgun VR, Kochetkov AV, Karinski YS, Yankelevsky DZ (2008a) Internal blast loading in a buried lined tunnel. Int J Impact Eng 35(3):172–183CrossRef Feldgun VR, Kochetkov AV, Karinski YS, Yankelevsky DZ (2008a) Internal blast loading in a buried lined tunnel. Int J Impact Eng 35(3):172–183CrossRef
Zurück zum Zitat Feldgun VR, Kochetkov AV, Karinski YS, Yankelevsky DZ (2008b) Blast response of a lined cavity in a porous saturated soil. Int J Impact Eng 35(9):953–966CrossRef Feldgun VR, Kochetkov AV, Karinski YS, Yankelevsky DZ (2008b) Blast response of a lined cavity in a porous saturated soil. Int J Impact Eng 35(9):953–966CrossRef
Zurück zum Zitat Feldgun VR, Karinski YS, Yankelevsky DZ (2011) Blast pressure distribution on a buried obstacle in a porous wet soil. Int J Prot Struct 2(1):45–70CrossRef Feldgun VR, Karinski YS, Yankelevsky DZ (2011) Blast pressure distribution on a buried obstacle in a porous wet soil. Int J Prot Struct 2(1):45–70CrossRef
Zurück zum Zitat Feldgun VR, Karinski YS, Yankelevsky DZ (2013) A coupled approach to simulate the explosion response of a buried structure in a soil-rock layered medium. Int J Prot Struct 4(3):231–292CrossRef Feldgun VR, Karinski YS, Yankelevsky DZ (2013) A coupled approach to simulate the explosion response of a buried structure in a soil-rock layered medium. Int J Prot Struct 4(3):231–292CrossRef
Zurück zum Zitat Feldgun VR, Karinski YS, Yankelevsky DZ (2014) Riemann solver for irreversibly compressible three-phase porous media. Int J Numer Anal Methods Geomech 38:406–440CrossRef Feldgun VR, Karinski YS, Yankelevsky DZ (2014) Riemann solver for irreversibly compressible three-phase porous media. Int J Numer Anal Methods Geomech 38:406–440CrossRef
Zurück zum Zitat Fragaszy RJ, Voss ME (1981). Laboratory verification of blast–induced liquefaction mechanism. Final Report ADA109000, US Air Force Office of Scientific Research, Washington, DC Fragaszy RJ, Voss ME (1981). Laboratory verification of blast–induced liquefaction mechanism. Final Report ADA109000, US Air Force Office of Scientific Research, Washington, DC
Zurück zum Zitat Fragaszy RJ, Voss ME (1986) Undrained compression behavior of sand. J Geotech Eng ASCE 112(3):334–347CrossRef Fragaszy RJ, Voss ME (1986) Undrained compression behavior of sand. J Geotech Eng ASCE 112(3):334–347CrossRef
Zurück zum Zitat Ghaboussi J, Kim KJ (1984) Quasistatic and dynamic analysis of saturated and partially saturated soils. In: Desai CS, Gallagher RH (eds) Mechanics of engineering materials. Wiley, Somerset, pp 277–296 Ghaboussi J, Kim KJ (1984) Quasistatic and dynamic analysis of saturated and partially saturated soils. In: Desai CS, Gallagher RH (eds) Mechanics of engineering materials. Wiley, Somerset, pp 277–296
Zurück zum Zitat Ghassemi A, Pak A, Shahir H (2010) Numerical study of the coupled hydro–mechanical effects in dynamic compaction of saturated granular soils. Comput Geotech 37:10–24CrossRef Ghassemi A, Pak A, Shahir H (2010) Numerical study of the coupled hydro–mechanical effects in dynamic compaction of saturated granular soils. Comput Geotech 37:10–24CrossRef
Zurück zum Zitat Grujicic M, Pandurangan B, Cheeseman BA (2006) The effect of degree of saturation of sand on detonation phenomena associated with shallow-buried and ground-laid mines. Shock Vib 13:41–61CrossRef Grujicic M, Pandurangan B, Cheeseman BA (2006) The effect of degree of saturation of sand on detonation phenomena associated with shallow-buried and ground-laid mines. Shock Vib 13:41–61CrossRef
Zurück zum Zitat Grujicic M, Pandurangan B, Cheeseman BA, Roy WN, Skaggs RR, Gupta R (2008a) Parameterization of the porous–material model for sand with various degrees of water saturation. Soil Dyn Earthq Eng 28:20–35CrossRef Grujicic M, Pandurangan B, Cheeseman BA, Roy WN, Skaggs RR, Gupta R (2008a) Parameterization of the porous–material model for sand with various degrees of water saturation. Soil Dyn Earthq Eng 28:20–35CrossRef
Zurück zum Zitat Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Roy WN, Skaggs RR (2008b) Computer-simulations based development of a high strain–rate, large–deformation, high-pressure material model for STANAG 4569 sandy gravel. Soil Dyn Earthq Eng 28:1045–1062CrossRef Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Roy WN, Skaggs RR (2008b) Computer-simulations based development of a high strain–rate, large–deformation, high-pressure material model for STANAG 4569 sandy gravel. Soil Dyn Earthq Eng 28:1045–1062CrossRef
Zurück zum Zitat Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Roy WN, Skaggs RR (2009) Derivation and validation of a material model for clayey sand for use in landmine detonation computational analysis. Multidiscip Model Mater Struct 5:311–344CrossRef Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Roy WN, Skaggs RR (2009) Derivation and validation of a material model for clayey sand for use in landmine detonation computational analysis. Multidiscip Model Mater Struct 5:311–344CrossRef
Zurück zum Zitat Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Roy WN, Skaggs RR (2010) Derivation, parameterization and validation of a sandy–clay material model for use in landmine detonation computational analyses. J Mater Eng Perform 19(3):434–450CrossRef Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Roy WN, Skaggs RR (2010) Derivation, parameterization and validation of a sandy–clay material model for use in landmine detonation computational analyses. J Mater Eng Perform 19(3):434–450CrossRef
Zurück zum Zitat Gu Q, Lee FH (2002) Ground response to dynamic compaction of dry sand. Géotechnique 52(7):481–493CrossRef Gu Q, Lee FH (2002) Ground response to dynamic compaction of dry sand. Géotechnique 52(7):481–493CrossRef
Zurück zum Zitat Henrych J (1979) The dynamics of explosion and its use. Elsevier, New York Henrych J (1979) The dynamics of explosion and its use. Elsevier, New York
Zurück zum Zitat Higgins W, Chakraborty T, Basu D (2013) A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast. Int J Numer Anal Methods Geomech 37(15):2590–2610CrossRef Higgins W, Chakraborty T, Basu D (2013) A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast. Int J Numer Anal Methods Geomech 37(15):2590–2610CrossRef
Zurück zum Zitat Ivanov PL (1967) Compaction of noncohesive soils by explosions. US Department of the Interior, Bureau of Reclamation and Natrual Science Foundation, Washington, DC Ivanov PL (1967) Compaction of noncohesive soils by explosions. US Department of the Interior, Bureau of Reclamation and Natrual Science Foundation, Washington, DC
Zurück zum Zitat Jackson JG, Rohani B, Ehrgot JQ (1980) Loading rate effects on compressibility of sand. J Geotech Eng Div 106(8):839–852 Jackson JG, Rohani B, Ehrgot JQ (1980) Loading rate effects on compressibility of sand. J Geotech Eng Div 106(8):839–852
Zurück zum Zitat Karinski YS, Feldgun VR, Yankelevsky DZ (2009a) Explosion-induced dynamic soil–structure interaction analysis with the coupled Godunov-variational difference approach. Int J Numer Methods Eng 77:824–851CrossRef Karinski YS, Feldgun VR, Yankelevsky DZ (2009a) Explosion-induced dynamic soil–structure interaction analysis with the coupled Godunov-variational difference approach. Int J Numer Methods Eng 77:824–851CrossRef
Zurück zum Zitat Karinski YS, Feldgun VR, Yankelevsky DZ (2009b) Effect of soil locking on the cylindrical shock wave’s peak pressure attenuation. J Eng Mech ASCE 135(10):1166–1180CrossRef Karinski YS, Feldgun VR, Yankelevsky DZ (2009b) Effect of soil locking on the cylindrical shock wave’s peak pressure attenuation. J Eng Mech ASCE 135(10):1166–1180CrossRef
Zurück zum Zitat Katona MG (1984) Evaluation of viscoplastic cap model. J Geotech Eng ASCE 110(8):1106–1125CrossRef Katona MG (1984) Evaluation of viscoplastic cap model. J Geotech Eng ASCE 110(8):1106–1125CrossRef
Zurück zum Zitat Khoei AR, Mohammadnejad T (2011) Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Comput Geotech 38:142–166CrossRef Khoei AR, Mohammadnejad T (2011) Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Comput Geotech 38:142–166CrossRef
Zurück zum Zitat Khoei AR, Azami AR, Haeri SM (2004) Implementation of plasticity based models in dynamic analysis of earth and rockfill dams: a comparison of Pastor–Zienkiewicz and cap models. Comput Geotech 31(5):384–409CrossRef Khoei AR, Azami AR, Haeri SM (2004) Implementation of plasticity based models in dynamic analysis of earth and rockfill dams: a comparison of Pastor–Zienkiewicz and cap models. Comput Geotech 31(5):384–409CrossRef
Zurück zum Zitat Kim KJ, Blouin SE (1996) Response of saturated porous nonlinear materials to dynamic loadings. Final Report ADA148528, US Air Force Office of Scientific Research, Washington, DC, 1984 Kim KJ, Blouin SE (1996) Response of saturated porous nonlinear materials to dynamic loadings. Final Report ADA148528, US Air Force Office of Scientific Research, Washington, DC, 1984
Zurück zum Zitat Krajcinovic D (1996) Damage mechanics. Elsevier, New York Krajcinovic D (1996) Damage mechanics. Elsevier, New York
Zurück zum Zitat Kumar R, Choudhury D, Bhargava K (2014) Prediction of blast-induced vibration parameters for soil sites. Int J Geomech 14(3):341–349 Kumar R, Choudhury D, Bhargava K (2014) Prediction of blast-induced vibration parameters for soil sites. Int J Geomech 14(3):341–349
Zurück zum Zitat Laine P, Sandvik A (2001). Derivation of mechanical properties for sand. In: Proceedings of the 4th Asia–Pacific conference on shock and impact loads on structures, Singapore, pp 361–368 Laine P, Sandvik A (2001). Derivation of mechanical properties for sand. In: Proceedings of the 4th Asia–Pacific conference on shock and impact loads on structures, Singapore, pp 361–368
Zurück zum Zitat Lee WY (2006) Numerical modeling of blast induced liquefaction. PhD thesis, Brigham Young University, Provo Lee WY (2006) Numerical modeling of blast induced liquefaction. PhD thesis, Brigham Young University, Provo
Zurück zum Zitat Leong EC, Anand S, Cheong HK, Lim CH (2007) Reexamination of peak stress and scaled distance due to ground shock. Int J Impact Eng 34(9):1487–1499CrossRef Leong EC, Anand S, Cheong HK, Lim CH (2007) Reexamination of peak stress and scaled distance due to ground shock. Int J Impact Eng 34(9):1487–1499CrossRef
Zurück zum Zitat Lewis BA (2004) Manual for LS–DYNA soil material model 147. Federal highway administration. Publication No. FHWA–HRT–095, McLean Lewis BA (2004) Manual for LS–DYNA soil material model 147. Federal highway administration. Publication No. FHWA–HRT–095, McLean
Zurück zum Zitat Li X, Zienkiewicz OC (1992) Multiphase flow in deforming porous media and finite element solutions. Comput Struct 45:211–227CrossRef Li X, Zienkiewicz OC (1992) Multiphase flow in deforming porous media and finite element solutions. Comput Struct 45:211–227CrossRef
Zurück zum Zitat Li X, Thomas HR, Fan Y (1999) Finite element method and constitutive modeling and computation for unsaturated soils. Comput Methods Appl Mech Eng 169:135–159CrossRef Li X, Thomas HR, Fan Y (1999) Finite element method and constitutive modeling and computation for unsaturated soils. Comput Methods Appl Mech Eng 169:135–159CrossRef
Zurück zum Zitat Livermore Software Technology Corporation (LSTC) (2007) LS–DYNA Keyword user’s manual, Version 971, Livermore Livermore Software Technology Corporation (LSTC) (2007) LS–DYNA Keyword user’s manual, Version 971, Livermore
Zurück zum Zitat Loukidis D (2006). Advanced constitutive modeling of sands and applications to foundation engineering. PhD thesis, Purdue University, West Lafayette Loukidis D (2006). Advanced constitutive modeling of sands and applications to foundation engineering. PhD thesis, Purdue University, West Lafayette
Zurück zum Zitat Lu G, Fall M (2016) A coupled chemo-viscoplastic cap model for simulating the behaviour of hydrating cemented tailings backfill under blast loading. Int J Numer Anal Methods Geomech 40:1123–1149CrossRef Lu G, Fall M (2016) A coupled chemo-viscoplastic cap model for simulating the behaviour of hydrating cemented tailings backfill under blast loading. Int J Numer Anal Methods Geomech 40:1123–1149CrossRef
Zurück zum Zitat Lu G, Fall M (2017) Modelling blast wave propagation in a subsurface geotechnical structure made of an evolutive porous material. Mech Mater 108:21–39CrossRef Lu G, Fall M (2017) Modelling blast wave propagation in a subsurface geotechnical structure made of an evolutive porous material. Mech Mater 108:21–39CrossRef
Zurück zum Zitat Lu Y, Wang Z, Chong K (2005) A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations. Soil Dyn Earthq Eng 25:275–288CrossRef Lu Y, Wang Z, Chong K (2005) A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations. Soil Dyn Earthq Eng 25:275–288CrossRef
Zurück zum Zitat Lundborg N (1968) Strength of rock-like materials. Int J Rock Mech Min Sci 5:427–454CrossRef Lundborg N (1968) Strength of rock-like materials. Int J Rock Mech Min Sci 5:427–454CrossRef
Zurück zum Zitat Lyakhov GM (1974) Fundamentals of the dynamics of detonation waves in soils and rock. Nedra, Moscow Lyakhov GM (1974) Fundamentals of the dynamics of detonation waves in soils and rock. Nedra, Moscow
Zurück zum Zitat Lyakhov GM, Okhitin VN (1977a) Nonstationary plane waves in media with bulk viscosity. J Appl Mech Tech Phys 18(5):693–700CrossRef Lyakhov GM, Okhitin VN (1977a) Nonstationary plane waves in media with bulk viscosity. J Appl Mech Tech Phys 18(5):693–700CrossRef
Zurück zum Zitat Lyakhov GM, Okhitin VN (1977b) Plane waves in nonlinear viscous multicomponent media. J Appl Mech Tech Phys 18(2):241–248CrossRef Lyakhov GM, Okhitin VN (1977b) Plane waves in nonlinear viscous multicomponent media. J Appl Mech Tech Phys 18(2):241–248CrossRef
Zurück zum Zitat Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. Géotechnique 47(2):255–272CrossRef Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. Géotechnique 47(2):255–272CrossRef
Zurück zum Zitat Merkle DH, Dass WC (1985) Fundamental properties of soils for complex dynamic loadings. Final Report ADA164206, US Air Force Office of Scientific Research. Washington, DC Merkle DH, Dass WC (1985) Fundamental properties of soils for complex dynamic loadings. Final Report ADA164206, US Air Force Office of Scientific Research. Washington, DC
Zurück zum Zitat Murray YD (2007) Users manual for LS–DYNA concrete material model 159. Report FHWA–HRT–05–062, Federal Highway Administration, McLean Murray YD (2007) Users manual for LS–DYNA concrete material model 159. Report FHWA–HRT–05–062, Federal Highway Administration, McLean
Zurück zum Zitat Murray YD, Lewis BA (1995) Numerical simulation of damage in concrete. Report DNA–TR–94–190, Defense Nuclear Agency, Alexandria Murray YD, Lewis BA (1995) Numerical simulation of damage in concrete. Report DNA–TR–94–190, Defense Nuclear Agency, Alexandria
Zurück zum Zitat Nelson I, Baladi GY (1977) Outrunning ground shock computed with different models. J Eng Mech Div 103(3):377–393 Nelson I, Baladi GY (1977) Outrunning ground shock computed with different models. J Eng Mech Div 103(3):377–393
Zurück zum Zitat Nelson I, Baron ML, Sandler I (1971) Mathematical models for geological materials for wave-propagation studies. Report DASA2672, Defense Nuclease Agency, Washington, DC Nelson I, Baron ML, Sandler I (1971) Mathematical models for geological materials for wave-propagation studies. Report DASA2672, Defense Nuclease Agency, Washington, DC
Zurück zum Zitat Omidvar M, Iskander M, Bless S (2012) Stress–strain behavior of sand at high strain rates. Int J Impact Eng 49:192–213CrossRef Omidvar M, Iskander M, Bless S (2012) Stress–strain behavior of sand at high strain rates. Int J Impact Eng 49:192–213CrossRef
Zurück zum Zitat Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377CrossRef Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377CrossRef
Zurück zum Zitat Prapaharan S, Chameau JL, Holtz RD (1989) Effect of strain rate on undrained strength derived from pressuremeter tests. Geotechnique 39(4):615–624CrossRef Prapaharan S, Chameau JL, Holtz RD (1989) Effect of strain rate on undrained strength derived from pressuremeter tests. Geotechnique 39(4):615–624CrossRef
Zurück zum Zitat Puebla H, Byrne PM, Phillips R (1997) Analysis of CANLEX liquefaction embankments: prototype and centrifuge models. Can Geotech J 34:641–657CrossRef Puebla H, Byrne PM, Phillips R (1997) Analysis of CANLEX liquefaction embankments: prototype and centrifuge models. Can Geotech J 34:641–657CrossRef
Zurück zum Zitat Sandler IS, Rubin D (1979) An algorithm and a modular subroutine for the cap model. Int J Numer Anal Methods Geomech 3:173–186CrossRef Sandler IS, Rubin D (1979) An algorithm and a modular subroutine for the cap model. Int J Numer Anal Methods Geomech 3:173–186CrossRef
Zurück zum Zitat Sandler IS, DiMaggio FL, Baladi GY (1976) Generalized cap model for geological materials. J Geotech Eng Div 102:683–699 Sandler IS, DiMaggio FL, Baladi GY (1976) Generalized cap model for geological materials. J Geotech Eng Div 102:683–699
Zurück zum Zitat Schapermeier E (1978) Liquefaction produced by compressional waves. In: Proc int. workshop on blast–induced liquefaction, Dames and Moore/US Air Force Maidenhead, UK, pp 57–64 Schapermeier E (1978) Liquefaction produced by compressional waves. In: Proc int. workshop on blast–induced liquefaction, Dames and Moore/US Air Force Maidenhead, UK, pp 57–64
Zurück zum Zitat Schrefler BA, Scotta R (2001) A fully coupled dynamic model for two-phase fluid flow in deformable porous media. Comput Methods Appl Mech Eng 190:3223–3246CrossRef Schrefler BA, Scotta R (2001) A fully coupled dynamic model for two-phase fluid flow in deformable porous media. Comput Methods Appl Mech Eng 190:3223–3246CrossRef
Zurück zum Zitat Schwer LE (1994) Viscoplastic augmentation of the smooth cap model. Nucl Eng Des 150:215–223CrossRef Schwer LE (1994) Viscoplastic augmentation of the smooth cap model. Nucl Eng Des 150:215–223CrossRef
Zurück zum Zitat Schwer LE, Murray YD (1994) A three-invariant smooth cap model with mixed hardening. Int J Numer Anal Methods Geomech 18:657–688CrossRef Schwer LE, Murray YD (1994) A three-invariant smooth cap model with mixed hardening. Int J Numer Anal Methods Geomech 18:657–688CrossRef
Zurück zum Zitat Semblat JF, Luong MP, Gary G (1999) 3d-Hopkinson bar: new experiments for dynamic testing on soils. Soils Found 39(1):1–10CrossRef Semblat JF, Luong MP, Gary G (1999) 3d-Hopkinson bar: new experiments for dynamic testing on soils. Soils Found 39(1):1–10CrossRef
Zurück zum Zitat Simo JC, Wu JW, Pister KS, Taylor RL (1986) Assessment of cap model: consistency return algorithms and rate-dependent extension. J Eng Mech, ASCE 114(2):191–218CrossRef Simo JC, Wu JW, Pister KS, Taylor RL (1986) Assessment of cap model: consistency return algorithms and rate-dependent extension. J Eng Mech, ASCE 114(2):191–218CrossRef
Zurück zum Zitat Simo JC, Kennedy JG, Govindjee S (1988) Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int J Numer Methods Eng 26:2161–2185CrossRef Simo JC, Kennedy JG, Govindjee S (1988) Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int J Numer Methods Eng 26:2161–2185CrossRef
Zurück zum Zitat Taiebat M, Dafalias YF (2008) SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32(8):915–948CrossRef Taiebat M, Dafalias YF (2008) SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32(8):915–948CrossRef
Zurück zum Zitat Tong X, Tuan CY (2007) Viscoplastic cap model for soils under high strain rate loading. J Geotech Geoenviron Eng ASCE 133(2):206–214CrossRef Tong X, Tuan CY (2007) Viscoplastic cap model for soils under high strain rate loading. J Geotech Geoenviron Eng ASCE 133(2):206–214CrossRef
Zurück zum Zitat Tu Z, Lu Y (2009) Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations. Int J Impact Eng 36(1):132–146CrossRef Tu Z, Lu Y (2009) Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations. Int J Impact Eng 36(1):132–146CrossRef
Zurück zum Zitat Veyera GE, Charlie WA (1990) Laboratory study of compressional liquefaction. J Geotech Eng 116:790–804CrossRef Veyera GE, Charlie WA (1990) Laboratory study of compressional liquefaction. J Geotech Eng 116:790–804CrossRef
Zurück zum Zitat Veyera GE, Charlie WA, Hubert ME (2002) One–dimensional shock-induced pore pressure response in saturated carbonate sand. Geotech Test J 25(3):277–288 Veyera GE, Charlie WA, Hubert ME (2002) One–dimensional shock-induced pore pressure response in saturated carbonate sand. Geotech Test J 25(3):277–288
Zurück zum Zitat Wang Z, Lu Y (2003) Numerical analysis on dynamic deformation mechanism of soils under blast loading. Soil Dyn Earthq Eng 23:705–714CrossRef Wang Z, Lu Y (2003) Numerical analysis on dynamic deformation mechanism of soils under blast loading. Soil Dyn Earthq Eng 23:705–714CrossRef
Zurück zum Zitat Wang Z, Hao H, Lu Y (2004a) A three-phase soil model for simulating stress wave propagation due to blast loading. Int J Numer Anal Methods Geomech 28:33–56CrossRef Wang Z, Hao H, Lu Y (2004a) A three-phase soil model for simulating stress wave propagation due to blast loading. Int J Numer Anal Methods Geomech 28:33–56CrossRef
Zurück zum Zitat Wang Z, Lu Y, Hao H (2004b) Numerical investigation of effects of water saturation on blast wave propagation in soil mass. J Eng Mech ASCE 130(5):551–561CrossRef Wang Z, Lu Y, Hao H (2004b) Numerical investigation of effects of water saturation on blast wave propagation in soil mass. J Eng Mech ASCE 130(5):551–561CrossRef
Zurück zum Zitat Wang Z, Lu Y, Bai C (2008) Numerical analysis of blast-induced liquefaction of soil. Comput Geotech 5:196–209CrossRef Wang Z, Lu Y, Bai C (2008) Numerical analysis of blast-induced liquefaction of soil. Comput Geotech 5:196–209CrossRef
Zurück zum Zitat Wang ZL, Konietzky H, Huang RY (2009) Elastic–plastic–hydrodynamic analysis of crater blasting in steel fiber reinforced concrete. Theor Appl Fract Mech 52:111–116CrossRef Wang ZL, Konietzky H, Huang RY (2009) Elastic–plastic–hydrodynamic analysis of crater blasting in steel fiber reinforced concrete. Theor Appl Fract Mech 52:111–116CrossRef
Zurück zum Zitat Wang Z, Lu Y, Bai C (2011) Numerical simulation of explosion-induced soil liquefaction and its effect on surface structures. Finite Elem Anal Des 47(9):1079–1090CrossRef Wang Z, Lu Y, Bai C (2011) Numerical simulation of explosion-induced soil liquefaction and its effect on surface structures. Finite Elem Anal Des 47(9):1079–1090CrossRef
Zurück zum Zitat Whitman RV (1970) The response of soils to dynamic loading. Final Report AD708625, US Army Engineer Waterways Experiment Station, Vicksburg Whitman RV (1970) The response of soils to dynamic loading. Final Report AD708625, US Army Engineer Waterways Experiment Station, Vicksburg
Zurück zum Zitat Xu TH, Zhang LM (2015) Numerical implementation of a bounding surface plasticity model for sand under high strain-rate loadings in LS–DYNA. Comput Geotech 66:203–218CrossRef Xu TH, Zhang LM (2015) Numerical implementation of a bounding surface plasticity model for sand under high strain-rate loadings in LS–DYNA. Comput Geotech 66:203–218CrossRef
Zurück zum Zitat Yamamuro JA, Lade PV (1993) Effects of strain rate on instability of granular soils. Geotech Test J 16(3):304–313CrossRef Yamamuro JA, Lade PV (1993) Effects of strain rate on instability of granular soils. Geotech Test J 16(3):304–313CrossRef
Zurück zum Zitat Yankelevsky DZ, Feldgun VR, Karinski YS (2008) Underground explosion of a cylindrical charge near a buried wall. Int J Impact Eng 35(8):905–919CrossRef Yankelevsky DZ, Feldgun VR, Karinski YS (2008) Underground explosion of a cylindrical charge near a buried wall. Int J Impact Eng 35(8):905–919CrossRef
Zurück zum Zitat Zhang HW, Sanavia L, Schre BA (2001) Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity model. Comput Struct 79:441–459CrossRef Zhang HW, Sanavia L, Schre BA (2001) Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity model. Comput Struct 79:441–459CrossRef
Zurück zum Zitat Zienkiewicz OC, Shiomi T (1984) Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. Int J Numer Anal Methods Geomech 8:71–96CrossRef Zienkiewicz OC, Shiomi T (1984) Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. Int J Numer Anal Methods Geomech 8:71–96CrossRef
Zurück zum Zitat Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T (1990a) Static and dynamic behavior of soils: a rational approach to quantitative solution, I. Fully saturated problems. Proc R Soc Lond 429:285–309CrossRef Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T (1990a) Static and dynamic behavior of soils: a rational approach to quantitative solution, I. Fully saturated problems. Proc R Soc Lond 429:285–309CrossRef
Zurück zum Zitat Zienkiewicz OC, Xie YM, Schrefler BA, Ledesma A, Bicanic N (1990b) 1990b. Static and dynamic behavior of soils: a rational approach to quantitative solution, II. Semi-saturated problems. Proc R Soc Lond 429:311–321CrossRef Zienkiewicz OC, Xie YM, Schrefler BA, Ledesma A, Bicanic N (1990b) 1990b. Static and dynamic behavior of soils: a rational approach to quantitative solution, II. Semi-saturated problems. Proc R Soc Lond 429:311–321CrossRef
Zurück zum Zitat Zukas JA (2004) Introduction to hydrocodes. Elsevier, Kidlington Zukas JA (2004) Introduction to hydrocodes. Elsevier, Kidlington
Metadaten
Titel
State-of-the-Art Modelling of Soil Behaviour Under Blast Loading
verfasst von
Gongda Lu
Mamadou Fall
Publikationsdatum
03.05.2018
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 6/2018
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-018-0560-5

Weitere Artikel der Ausgabe 6/2018

Geotechnical and Geological Engineering 6/2018 Zur Ausgabe