Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Steady-State Neutron Transport Theory and Simulation

verfasst von : Yican Wu

Erschienen in: Neutronics of Advanced Nuclear Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neutron transport theory is the research basis for neutronics and focuses on the description of neutron motion in media and the corresponding laws. There are two types of methods for neutron transport calculation: the Monte Carlo method (also called the probabilistic method or the stochastic method) and the deterministic method. The Monte Carlo method is a numerical method based on probability and statistical theories, and can explicitly describe the characteristics of randomly moving particles and the process of physical experiments. In contrast, in the deterministic method, a group of mathematical–physical equations are first built up to explain the physical characteristics of the target system. Then, by discretizing the variables in these equations, including direction, energy, space, and time, an approximate solution can be obtained with numerical calculation. There are complicated features for advanced nuclear systems, such as the complex neutron spectrum and angular distribution, complicated material composition, large spatial span, complex geometry, etc. The Monte Carlo method uses the continuous-energy cross section, and can be used to address any complex geometry, with prominent advantages for neutron transport simulations for advanced nuclear systems. However, some challenges, such as the slow convergence rate and difficulty in addressing problems of deep penetration, still exist. The deterministic method is faster, but falls short in addressing advanced nuclear systems with complex geometries, strong anisotropy of neutron scattering, and complicated energy spectrums. In recent years, the method of characteristics (MOC) and the discrete ordinates method with unstructured meshes have been developed with improved geometry processing abilities. However, problems, such as the ray effects and the high cost of large-scale systems, still need to be solved. The Monte Carlo–deterministic coupling method, which combines the advantages of both the Monte Carlo and deterministic methods, is one of the most efficient and accurate methods for solving transport problems in advanced nuclear systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lamarsh JR (1966) Introduction to nuclear reactor theory. Addison-Wesley Publication Company, Massachusetts Lamarsh JR (1966) Introduction to nuclear reactor theory. Addison-Wesley Publication Company, Massachusetts
2.
3.
Zurück zum Zitat Lewis EE, Miller WF Jr (1993) Computational methods of neutron transport. American Nuclear Society, La Grange Park, IllinoisMATH Lewis EE, Miller WF Jr (1993) Computational methods of neutron transport. American Nuclear Society, La Grange Park, IllinoisMATH
4.
Zurück zum Zitat Wu YC, Song J, Zheng HQ et al (2015) CAD-based Monte Carlo Program for integrated simulation of nuclear system SuperMC. Ann Nucl Energy 82:161–168CrossRef Wu YC, Song J, Zheng HQ et al (2015) CAD-based Monte Carlo Program for integrated simulation of nuclear system SuperMC. Ann Nucl Energy 82:161–168CrossRef
5.
Zurück zum Zitat Song J, Sun GY, Chen ZP et al (2015) Study on Monte Carlo K-effective calculation method. Nucl Sci Eng 35(2):241–245 (in Chinese) Song J, Sun GY, Chen ZP et al (2015) Study on Monte Carlo K-effective calculation method. Nucl Sci Eng 35(2):241–245 (in Chinese)
6.
Zurück zum Zitat Ott K, Neuhold R (1985) Introductory nuclear reactor dynamics. American Nuclear Society, La Grange Park III, USA Ott K, Neuhold R (1985) Introductory nuclear reactor dynamics. American Nuclear Society, La Grange Park III, USA
7.
Zurück zum Zitat Haghighat A, Wagner JC (2003) Monte Carlo variance reduction with deterministic importance functions. Prog Nucl Energy 42(1):25–53CrossRef Haghighat A, Wagner JC (2003) Monte Carlo variance reduction with deterministic importance functions. Prog Nucl Energy 42(1):25–53CrossRef
8.
Zurück zum Zitat Zhao JB, Li XM, Wu B et al (2016) An automatic adaptive mesh generation method for weight window in Monte Carlo particle transport. Ann Nucl Energy 91:105–110CrossRef Zhao JB, Li XM, Wu B et al (2016) An automatic adaptive mesh generation method for weight window in Monte Carlo particle transport. Ann Nucl Energy 91:105–110CrossRef
9.
Zurück zum Zitat Wagner JC, Blakeman ED, Peplow DE (2007) Forward-weighted CADIS method for global variance reduction. Trans Am Nucl Soc 97:630–633 Wagner JC, Blakeman ED, Peplow DE (2007) Forward-weighted CADIS method for global variance reduction. Trans Am Nucl Soc 97:630–633
10.
Zurück zum Zitat Davis A, Turner A (2011) Comparison of global variance reduction techniques for Monte Carlo radiation transport simulations of ITER. Fusion Eng Des 86(9–11):2698–2700CrossRef Davis A, Turner A (2011) Comparison of global variance reduction techniques for Monte Carlo radiation transport simulations of ITER. Fusion Eng Des 86(9–11):2698–2700CrossRef
11.
Zurück zum Zitat Zhang S, Yu SP, He P (2016) Verification of SuperMC with ITER C-Lite neutronic model. Fusion Eng Des 113:126–130CrossRef Zhang S, Yu SP, He P (2016) Verification of SuperMC with ITER C-Lite neutronic model. Fusion Eng Des 113:126–130CrossRef
12.
Zurück zum Zitat Wu YC (2018) Multi-functional Neutronics calculation methodology and program for nuclear design and radiation safety evaluation. Fusion Sci Technol 74(4):321–329CrossRef Wu YC (2018) Multi-functional Neutronics calculation methodology and program for nuclear design and radiation safety evaluation. Fusion Sci Technol 74(4):321–329CrossRef
13.
Zurück zum Zitat Chen ZP, Song J, Wu B et al (2015) Optimal spatial subdivision method for improving geometry navigation performance in Monte Carlo particle transport simulation. Ann Nucl Energy 76:479–484CrossRef Chen ZP, Song J, Wu B et al (2015) Optimal spatial subdivision method for improving geometry navigation performance in Monte Carlo particle transport simulation. Ann Nucl Energy 76:479–484CrossRef
14.
Zurück zum Zitat Askew JR (1972) A characteristics formulation of the neutron transport equation in complicated geometries. Report AEEW-M 1108. United Kingdom Atomic Energy Establishment, Winfrith, England Askew JR (1972) A characteristics formulation of the neutron transport equation in complicated geometries. Report AEEW-M 1108. United Kingdom Atomic Energy Establishment, Winfrith, England
15.
Zurück zum Zitat Bell GI, Glasstone S (1970) Nuclear reactor theory. Van Nostrand Reihold Company, New York Bell GI, Glasstone S (1970) Nuclear reactor theory. Van Nostrand Reihold Company, New York
16.
Zurück zum Zitat Wu YC, Xie ZS, Fischer U (1999) A discrete ordinates nodal method for one-dimensional neutron transport calculation in curvilinear geometries. Nucl Sci Eng 133:350–357CrossRef Wu YC, Xie ZS, Fischer U (1999) A discrete ordinates nodal method for one-dimensional neutron transport calculation in curvilinear geometries. Nucl Sci Eng 133:350–357CrossRef
17.
Zurück zum Zitat Azmy Y, Sartori E (2010) Nuclear computational science: a century in review. Springer, BerlinCrossRef Azmy Y, Sartori E (2010) Nuclear computational science: a century in review. Springer, BerlinCrossRef
18.
Zurück zum Zitat Lee H, Choi S, Lee D (2015) A hybrid Monte Carlo/method-of-characteristics method for efficient neutron transport analysis. Nucl Sci Eng 180:69–85CrossRef Lee H, Choi S, Lee D (2015) A hybrid Monte Carlo/method-of-characteristics method for efficient neutron transport analysis. Nucl Sci Eng 180:69–85CrossRef
19.
Zurück zum Zitat Wu YC, Team FDS (2009) CAD-based interface programs for fusion neutron transport simulation. Fusion Eng Des 84(7–11):1987–1992CrossRef Wu YC, Team FDS (2009) CAD-based interface programs for fusion neutron transport simulation. Fusion Eng Des 84(7–11):1987–1992CrossRef
20.
Zurück zum Zitat X-5 Monte Carlo Team (2003) MCNP-A general Monte Carlo N-particle transport code, Version 5. LA-UR-03-1987, Los Alamos National Library X-5 Monte Carlo Team (2003) MCNP-A general Monte Carlo N-particle transport code, Version 5. LA-UR-03-1987, Los Alamos National Library
21.
Zurück zum Zitat Leppanen J, Pusa M, Vitanen T (2015) The serpent Monte Carlo code: status, development and applications in 2013. Ann Nucl Energy 82:142–150CrossRef Leppanen J, Pusa M, Vitanen T (2015) The serpent Monte Carlo code: status, development and applications in 2013. Ann Nucl Energy 82:142–150CrossRef
22.
Zurück zum Zitat Lindley BA, Hosking JG, Smith PJ et al (2017) Current status of the reactor physics code WIMS and recent developments. Ann Nucl Energy 102:148–157CrossRef Lindley BA, Hosking JG, Smith PJ et al (2017) Current status of the reactor physics code WIMS and recent developments. Ann Nucl Energy 102:148–157CrossRef
23.
Zurück zum Zitat Oak Ridge National Laboratory (1998) DOORS3.2 one, two- and three dimensional discrete ordinates neutron/photon transport code system. CCC-650, Oak Ridge, Tennessee Oak Ridge National Laboratory (1998) DOORS3.2 one, two- and three dimensional discrete ordinates neutron/photon transport code system. CCC-650, Oak Ridge, Tennessee
24.
Zurück zum Zitat Chen J, Liu ZY, Zhao C et al (2018) A new high-fidelity neutronics code NECP-X. Ann Nucl Energy 116:417–428CrossRef Chen J, Liu ZY, Zhao C et al (2018) A new high-fidelity neutronics code NECP-X. Ann Nucl Energy 116:417–428CrossRef
Metadaten
Titel
Steady-State Neutron Transport Theory and Simulation
verfasst von
Yican Wu
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6520-1_2