Skip to main content
Erschienen in: Journal of Nanoparticle Research 7/2020

01.07.2020 | Research paper

RETRACTED ARTICLE: Stem cell membrane–camouflaged bioinspired nanoparticles for targeted photodynamic therapy of lung cancer

Erschienen in: Journal of Nanoparticle Research | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Photodynamic therapy (PDT) with photosensitizers has been considered an effective strategy for treating tumors by generating reactive oxygen species (ROS) to induce tumor cells apoptosis or necrosis. However, the poor water solubility, rapid blood clearance, and lack of effective targeting of the photosensitizer are still a serious challenge for its satisfactory anti-cancer efficacy. Herein, we fabricated a stem cell membrane–camouflaged gelatin nanogels (Ng), which integrating the drug loading capacity of Ng and targeting ability of stem cell membrane, endowed with many unique advantages for targeted drug delivery. This bioinspired drug delivery system composed of hydrophobic photosensitizer, chlorin e6 (Ce6)-loaded gelatin nanogels (Ng) (Ng/Ce6), as the inner cores and coated stem cell membrane vesicles (SCV) as the outer shells, noted as Ng/Ce6@SCV. The averaged hydrodynamic diameter of Ng/Ce6@SCV was 202.7 ± 11.7 nm (polydispersity index (PDI) = 0.113). Ng/Ce6@SCV could efficiently promote the cellular internalization of Ce6, and generate enough ROS in the tumor cells after near infrared (NIR) laser irradiation, which could efficiently suppress the growth of A549 tumor cells in vitro. After administration, Ng/Ce6@SCV exhibited targeting accumulation and long-term retention at tumor tissues, which was related to the immune escape and tumor targeting ability of the stem cell membrane. The in vivo anti-tumor activity results also demonstrated the enhanced anti-tumor effect of Ng/Ce6@SCV after NIR irradiation by significantly suppressed the primary tumor growth with minimal side effects. All the results indicated this polyphosphoester-based bioinspired nanodrug delivery system could be a suitable strategy for precise and effective PDT of cancers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569CrossRef Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569CrossRef
Zurück zum Zitat Aryal S, Hu C-MJ, Fang RH, Dehaini D, Carpenter C, Zhang D-E, Zhang L (2013) Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine 8(8):1271–1280CrossRef Aryal S, Hu C-MJ, Fang RH, Dehaini D, Carpenter C, Zhang D-E, Zhang L (2013) Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine 8(8):1271–1280CrossRef
Zurück zum Zitat Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1(4):279–293CrossRef Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1(4):279–293CrossRef
Zurück zum Zitat Conti M, Tazzari V, Baccini C, Pertici G, Serino LP, De Giorgi U (2006) Anticancer drug delivery with nanoparticles. In Vivo 20(6A):697–701 Conti M, Tazzari V, Baccini C, Pertici G, Serino LP, De Giorgi U (2006) Anticancer drug delivery with nanoparticles. In Vivo 20(6A):697–701
Zurück zum Zitat Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171CrossRef Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171CrossRef
Zurück zum Zitat Gao C, Lin Z, Wu Z, Lin X, He Q (2016a) Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. ACS Appl Mater Interfaces 8(50):34252–34260CrossRef Gao C, Lin Z, Wu Z, Lin X, He Q (2016a) Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. ACS Appl Mater Interfaces 8(50):34252–34260CrossRef
Zurück zum Zitat Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q (2016b) Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30):4056–4062CrossRef Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q (2016b) Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30):4056–4062CrossRef
Zurück zum Zitat Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST (2017) Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25–38CrossRef Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST (2017) Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25–38CrossRef
Zurück zum Zitat Li L-L, Xu J-H, Qi G-B, Zhao X, Yu F, Wang H (2014) Core–shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano 8(5):4975–4983CrossRef Li L-L, Xu J-H, Qi G-B, Zhao X, Yu F, Wang H (2014) Core–shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano 8(5):4975–4983CrossRef
Zurück zum Zitat Li Y, Wu Q, Kang M, Song N, Wang D, Tang BZ (2020) Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. Biomaterials 232:119749CrossRef Li Y, Wu Q, Kang M, Song N, Wang D, Tang BZ (2020) Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. Biomaterials 232:119749CrossRef
Zurück zum Zitat Liu Y, Meng X, Bu W (2019) Upconversion-based photodynamic cancer therapy. Coord Chem Rev 379:82–98CrossRef Liu Y, Meng X, Bu W (2019) Upconversion-based photodynamic cancer therapy. Coord Chem Rev 379:82–98CrossRef
Zurück zum Zitat Lu Z-R, Kopečková P, Kopeček J (1999) Polymerizable Fab′ antibody fragments for targeting of anticancer drugs. Nat Biotechnol 17(11):1101–1104CrossRef Lu Z-R, Kopečková P, Kopeček J (1999) Polymerizable Fab′ antibody fragments for targeting of anticancer drugs. Nat Biotechnol 17(11):1101–1104CrossRef
Zurück zum Zitat Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346CrossRef Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346CrossRef
Zurück zum Zitat Luk BT, Fang RH, Hu C-MJ, Copp JA, Thamphiwatana S, Dehaini D, Gao W, Zhang K, Li S, Zhang L (2016) Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 6(7):1004–1011CrossRef Luk BT, Fang RH, Hu C-MJ, Copp JA, Thamphiwatana S, Dehaini D, Gao W, Zhang K, Li S, Zhang L (2016) Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 6(7):1004–1011CrossRef
Zurück zum Zitat Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6CrossRef Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6CrossRef
Zurück zum Zitat Mansoori B, Mohammadi A, Doustvandi MA, Mohammadnejad F, Kamari F, Gjerstorff MF, Baradaran B, Hamblin MR (2019) Photodynamic therapy for cancer: role of natural products. Photodiagn Photodyn Ther 26:395–404CrossRef Mansoori B, Mohammadi A, Doustvandi MA, Mohammadnejad F, Kamari F, Gjerstorff MF, Baradaran B, Hamblin MR (2019) Photodynamic therapy for cancer: role of natural products. Photodiagn Photodyn Ther 26:395–404CrossRef
Zurück zum Zitat Mima Y, Hashimoto Y, Shimizu T, Kiwada H, Ishida T (2015) Anti-PEG IgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein. Mol Pharm 12(7):2429–2435CrossRef Mima Y, Hashimoto Y, Shimizu T, Kiwada H, Ishida T (2015) Anti-PEG IgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein. Mol Pharm 12(7):2429–2435CrossRef
Zurück zum Zitat Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1(1):1–21CrossRef Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1(1):1–21CrossRef
Zurück zum Zitat Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8(1):61–68CrossRef Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8(1):61–68CrossRef
Zurück zum Zitat Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRef Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRef
Zurück zum Zitat Singh S (2010) Nanomedicine–nanoscale drugs and delivery systems. J Nanosci Nanotechnol 10(12):7906–7918CrossRef Singh S (2010) Nanomedicine–nanoscale drugs and delivery systems. J Nanosci Nanotechnol 10(12):7906–7918CrossRef
Zurück zum Zitat Tian W, Lu J, Jiao D (2019) Stem cell membrane vesicle–coated nanoparticles for efficient tumor-targeted therapy of orthotopic breast cancer. Polym Adv Technol 30(4):1051–1060CrossRef Tian W, Lu J, Jiao D (2019) Stem cell membrane vesicle–coated nanoparticles for efficient tumor-targeted therapy of orthotopic breast cancer. Polym Adv Technol 30(4):1051–1060CrossRef
Zurück zum Zitat Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135CrossRef Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135CrossRef
Zurück zum Zitat Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O (2015) Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 21(4):223–232CrossRef Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O (2015) Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 21(4):223–232CrossRef
Zurück zum Zitat Xu L, Wu S, Zhou X (2018) Bioinspired nanocarriers for an effective chemotherapy of hepatocellular carcinoma. J Biomater Appl 33(1):72–81CrossRef Xu L, Wu S, Zhou X (2018) Bioinspired nanocarriers for an effective chemotherapy of hepatocellular carcinoma. J Biomater Appl 33(1):72–81CrossRef
Zurück zum Zitat Xu L, Su T, Xu X, Zhu L, Shi L (2019a) Platelets membrane camouflaged irinotecan-loaded gelatin nanogels for in vivo colorectal carcinoma therapy. J Drug Deliv Sci Technol 53:101190CrossRef Xu L, Su T, Xu X, Zhu L, Shi L (2019a) Platelets membrane camouflaged irinotecan-loaded gelatin nanogels for in vivo colorectal carcinoma therapy. J Drug Deliv Sci Technol 53:101190CrossRef
Zurück zum Zitat Xu L, Wu S, Wang J (2019b) Cancer cell membrane–coated nanocarriers for homologous target inhibiting the growth of hepatocellular carcinoma. J Bioact Compat Polym 34(1):58–71CrossRef Xu L, Wu S, Wang J (2019b) Cancer cell membrane–coated nanocarriers for homologous target inhibiting the growth of hepatocellular carcinoma. J Bioact Compat Polym 34(1):58–71CrossRef
Zurück zum Zitat Xuan M, Shao J, Dai L, He Q, Li J (2015) Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv Healthc Mater 4(11):1645–1652CrossRef Xuan M, Shao J, Dai L, He Q, Li J (2015) Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv Healthc Mater 4(11):1645–1652CrossRef
Zurück zum Zitat Zhou Z, Song J, Nie L, Chen X (2016) Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 45(23):6597–6626CrossRef Zhou Z, Song J, Nie L, Chen X (2016) Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 45(23):6597–6626CrossRef
Metadaten
Titel
RETRACTED ARTICLE: Stem cell membrane–camouflaged bioinspired nanoparticles for targeted photodynamic therapy of lung cancer
Publikationsdatum
01.07.2020
Erschienen in
Journal of Nanoparticle Research / Ausgabe 7/2020
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-020-04915-6

Weitere Artikel der Ausgabe 7/2020

Journal of Nanoparticle Research 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.