Skip to main content

2011 | OriginalPaper | Buchkapitel

Stem Cells in Tissue Engineering and Cell Therapies of Urological Defects

verfasst von : Christoph Becker, Katrin Montzka, Gerhard Jakse

Erschienen in: Stem Cell Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Objectives: This chapter focuses on advances in regenerative therapies using stem cells in urology. Different stem cell types will be introduced due to their classification and hierarchic order.
Methods: A detailed literature search has been performed using the PubMed database of the National Center of Biotechnology Information (NCBI). Publications of experimental investigations and in vivo trials using stem cells in reconstructive urology have been summarized and critically reviewed.
Results: Tissue engineering and autologous cell therapy techniques have been developed in order to generate prostheses for different urologic tissues and organ systems. During the last decade increasing numbers of studies have described stem cells in the context of therapeutic tools. The ability of adult and embryonic stem cells as well as progenitors to improve bladder wall architecture, to improve renal tubule formation or to promote restoration of spermatogenesis or recovery of continence has been investigated in a number of animal models. Another promising stem cell source, the so-called induced pluripotent stem cells, was recently generated, but not further investigated yet. Although results have been encouraging, to date, none of these stem cell-based therapies could reach clinical trials.
Conclusions: Review of the current literature has revealed several populations of adult stem cells and progenitor cells as useful cellular sources in the treatment and reconstruction of urologic organs. However, considerable basic research still needs to be performed to ensure the controlled differentiation and long-term fate of stem cells following transplantation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bach AD, Bannasch H, Galla TJ, Bittner KM, Stark GB. Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng. 2001; 7:45–53.CrossRef Bach AD, Bannasch H, Galla TJ, Bittner KM, Stark GB. Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng. 2001; 7:45–53.CrossRef
2.
Zurück zum Zitat Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999; 17:149–155.CrossRef Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999; 17:149–155.CrossRef
3.
Zurück zum Zitat Fraser M, Thomas DF, Pitt E, Harnden P, Trejdosiewicz LK, Southgate J. A surgical model of composite cystoplasty with cultured urothelial cells: a controlled study of gross outcome and urothelial phenotype. BJU Int. 2004; 93:609–616.CrossRef Fraser M, Thomas DF, Pitt E, Harnden P, Trejdosiewicz LK, Southgate J. A surgical model of composite cystoplasty with cultured urothelial cells: a controlled study of gross outcome and urothelial phenotype. BJU Int. 2004; 93:609–616.CrossRef
4.
Zurück zum Zitat Matsunuma H, Kagami H, Narita Y, Hata K, Ono Y, Ohshima S, Ueda M. Constructing a tissue-engineered ureter using a decellularized matrix with cultured uroepithelial cells and bone marrow-derived mononuclear cells. Tissue Eng. 2006; 12:509–518.CrossRef Matsunuma H, Kagami H, Narita Y, Hata K, Ono Y, Ohshima S, Ueda M. Constructing a tissue-engineered ureter using a decellularized matrix with cultured uroepithelial cells and bone marrow-derived mononuclear cells. Tissue Eng. 2006; 12:509–518.CrossRef
5.
Zurück zum Zitat Humes HD, MacKay SM, Funke AJ, Buffington DA. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int. 1999; 55:2502–2514.CrossRef Humes HD, MacKay SM, Funke AJ, Buffington DA. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int. 1999; 55:2502–2514.CrossRef
6.
Zurück zum Zitat Kershen RT, Yoo JJ, Moreland RB, Krane RJ, Atala A. Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo. Tissue Eng. 2002; 8:515–524.CrossRef Kershen RT, Yoo JJ, Moreland RB, Krane RJ, Atala A. Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo. Tissue Eng. 2002; 8:515–524.CrossRef
7.
Zurück zum Zitat De Filippo RE, Yoo JJ, Atala A. Engineering of vaginal tissue in vivo. Tissue Eng. 2003; 9:301–306.CrossRef De Filippo RE, Yoo JJ, Atala A. Engineering of vaginal tissue in vivo. Tissue Eng. 2003; 9:301–306.CrossRef
8.
Zurück zum Zitat Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006; 367:1241–1246.CrossRef Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006; 367:1241–1246.CrossRef
9.
Zurück zum Zitat Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science 2000; 287:1427–1430.CrossRef Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science 2000; 287:1427–1430.CrossRef
10.
Zurück zum Zitat Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001; 105:829–841.CrossRef Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001; 105:829–841.CrossRef
11.
12.
Zurück zum Zitat Monk M. A stem-line model for cellular and chromosomal differentiation in early mouse-development. Differentiation 1981; 19:71–76.CrossRef Monk M. A stem-line model for cellular and chromosomal differentiation in early mouse-development. Differentiation 1981; 19:71–76.CrossRef
13.
Zurück zum Zitat Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154–156.CrossRef Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154–156.CrossRef
14.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145–1147.CrossRef Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145–1147.CrossRef
15.
Zurück zum Zitat Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA. 1998; 95:13726–13731.CrossRef Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA. 1998; 95:13726–13731.CrossRef
16.
Zurück zum Zitat Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, et al. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 2002; 129:2773–2783. Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, et al. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 2002; 129:2773–2783.
17.
Zurück zum Zitat Conrad C, Huss R. Adult stem cell lines in regenerative medicine and reconstructive surgery. J Surg Res. 2005; 124:201–208.CrossRef Conrad C, Huss R. Adult stem cell lines in regenerative medicine and reconstructive surgery. J Surg Res. 2005; 124:201–208.CrossRef
18.
Zurück zum Zitat Park IK, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R, Klug CA, Li K, Kuhr C, Doyle MJ, et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 2002; 99:488–498.CrossRef Park IK, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R, Klug CA, Li K, Kuhr C, Doyle MJ, et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 2002; 99:488–498.CrossRef
19.
Zurück zum Zitat Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci. 2001; 938:231–233, discussion 233–235.CrossRef Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci. 2001; 938:231–233, discussion 233–235.CrossRef
20.
Zurück zum Zitat Gritti A, Vescovi AL, Galli R. Adult neural stem cells: plasticity and developmental potential. J Physiol Paris 2002; 96:81–90.CrossRef Gritti A, Vescovi AL, Galli R. Adult neural stem cells: plasticity and developmental potential. J Physiol Paris 2002; 96:81–90.CrossRef
21.
Zurück zum Zitat Young HE, Black AC Jr.. Adult stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004; 276:75–102.CrossRef Young HE, Black AC Jr.. Adult stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004; 276:75–102.CrossRef
22.
Zurück zum Zitat Semb H. Human embryonic stem cells: origin, properties and applications. Apmis 2005; 113:743–750.CrossRef Semb H. Human embryonic stem cells: origin, properties and applications. Apmis 2005; 113:743–750.CrossRef
23.
Zurück zum Zitat Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002; 418:50–56.CrossRef Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002; 418:50–56.CrossRef
24.
Zurück zum Zitat Singla DK, Hacker TA, Ma L, Douglas PS, Sullivan R, Lyons GE, Kamp TJ. Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol. 2006; 40:195–200.CrossRef Singla DK, Hacker TA, Ma L, Douglas PS, Sullivan R, Lyons GE, Kamp TJ. Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol. 2006; 40:195–200.CrossRef
25.
Zurück zum Zitat Lakshmipathy U, Verfaillie C. Stem cell plasticity. Blood Rev. 2005; 19:29–38.CrossRef Lakshmipathy U, Verfaillie C. Stem cell plasticity. Blood Rev. 2005; 19:29–38.CrossRef
26.
Zurück zum Zitat Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284:1168–1170.CrossRef Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284:1168–1170.CrossRef
27.
Zurück zum Zitat Khurana S, Mukhopadhyay A. In vitro transdifferentiation of adult hematopoietic stem cells: an alternative source of engraftable hepatocytes. J Hepatol. 2008; 49:998–1007.CrossRef Khurana S, Mukhopadhyay A. In vitro transdifferentiation of adult hematopoietic stem cells: an alternative source of engraftable hepatocytes. J Hepatol. 2008; 49:998–1007.CrossRef
28.
Zurück zum Zitat Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283:534–537.CrossRef Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283:534–537.CrossRef
29.
Zurück zum Zitat Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999; 96:10711–10716.CrossRef Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999; 96:10711–10716.CrossRef
30.
Zurück zum Zitat Lian G, Wang C, Teng C, Zhang C, Du L, Zhong Q, Miao C, Ding M, Deng H. Failure of hepatocyte marker-expressing hematopoietic progenitor cells to efficiently convert into hepatocytes in vitro. Exp Hematol. 2006; 34:348–358.CrossRef Lian G, Wang C, Teng C, Zhang C, Du L, Zhong Q, Miao C, Ding M, Deng H. Failure of hepatocyte marker-expressing hematopoietic progenitor cells to efficiently convert into hepatocytes in vitro. Exp Hematol. 2006; 34:348–358.CrossRef
31.
Zurück zum Zitat Liu Y, Rao MS. Transdifferentiation – fact or artifact. J Cell Biochem. 2003; 88:29–40.CrossRef Liu Y, Rao MS. Transdifferentiation – fact or artifact. J Cell Biochem. 2003; 88:29–40.CrossRef
32.
Zurück zum Zitat Wells WA. Is transdifferentiation in trouble? J Cell Biol. 2002; 157:15–18.CrossRef Wells WA. Is transdifferentiation in trouble? J Cell Biol. 2002; 157:15–18.CrossRef
33.
Zurück zum Zitat Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416:542–545.CrossRef Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416:542–545.CrossRef
34.
Zurück zum Zitat Quesenberry PJ, Abedi M, Aliotta J, Colvin G, Demers D, Dooner M, Greer D, Hebert H, Menon MK, Pimentel J, et al. Stem cell plasticity: an overview. Blood Cells Mol Dis. 2004; 32:1–4.CrossRef Quesenberry PJ, Abedi M, Aliotta J, Colvin G, Demers D, Dooner M, Greer D, Hebert H, Menon MK, Pimentel J, et al. Stem cell plasticity: an overview. Blood Cells Mol Dis. 2004; 32:1–4.CrossRef
35.
Zurück zum Zitat Serakinci N, Keith WN. Therapeutic potential of adult stem cells. Eur J Cancer 2006; 42:1243–1246.CrossRef Serakinci N, Keith WN. Therapeutic potential of adult stem cells. Eur J Cancer 2006; 42:1243–1246.CrossRef
36.
Zurück zum Zitat Till JE, Mc CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961; 14:213–222.CrossRef Till JE, Mc CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961; 14:213–222.CrossRef
37.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143–147.CrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143–147.CrossRef
38.
Zurück zum Zitat Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364:141–148.CrossRef Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364:141–148.CrossRef
39.
Zurück zum Zitat Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E,Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001; 344:385–386.CrossRef Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E,Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001; 344:385–386.CrossRef
40.
Zurück zum Zitat Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360:427–435.CrossRef Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360:427–435.CrossRef
41.
Zurück zum Zitat Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000; 18:307–316. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000; 18:307–316.
42.
Zurück zum Zitat Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–676.CrossRef Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–676.CrossRef
43.
Zurück zum Zitat Welstead GG, Brambrink T, Jaenisch R. Generating iPS Cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4. J Vis Exp. 2008; 14:734–737. Welstead GG, Brambrink T, Jaenisch R. Generating iPS Cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4. J Vis Exp. 2008; 14:734–737.
44.
Zurück zum Zitat Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008; 26:1269–1275.CrossRef Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008; 26:1269–1275.CrossRef
45.
Zurück zum Zitat Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008; 454:646–650.CrossRef Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008; 454:646–650.CrossRef
46.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.CrossRef Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.CrossRef
47.
Zurück zum Zitat Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008; 26:101–106.CrossRef Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008; 26:101–106.CrossRef
48.
Zurück zum Zitat Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7:211–228.CrossRef Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7:211–228.CrossRef
49.
Zurück zum Zitat Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 1996; 85:331–343.CrossRef Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 1996; 85:331–343.CrossRef
50.
Zurück zum Zitat Becker C, Laeufer T, Arikkat J, Jakse G. TGFbeta-1 and epithelial-mesenchymal interactions promote smooth muscle gene expression in bone marrow stromal cells: possible application in therapies for urological defects. Int J Artif Organs 2008; 31:951–959. Becker C, Laeufer T, Arikkat J, Jakse G. TGFbeta-1 and epithelial-mesenchymal interactions promote smooth muscle gene expression in bone marrow stromal cells: possible application in therapies for urological defects. Int J Artif Organs 2008; 31:951–959.
51.
Zurück zum Zitat DiSandro MJ, Li Y, Baskin LS, Hayward S, Cunha G. Mesenchymal-epithelial interactions in bladder smooth muscle development: epithelial specificity. J Urol. 1998; 160:1040–1046, discussion 1079.CrossRef DiSandro MJ, Li Y, Baskin LS, Hayward S, Cunha G. Mesenchymal-epithelial interactions in bladder smooth muscle development: epithelial specificity. J Urol. 1998; 160:1040–1046, discussion 1079.CrossRef
52.
Zurück zum Zitat Bronner-Fraser M, Fraser SE. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 1988; 335:161–164.CrossRef Bronner-Fraser M, Fraser SE. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 1988; 335:161–164.CrossRef
53.
Zurück zum Zitat Oottamasathien S, Wang Y, Williams K, Franco OE, Wills ML, Thomas JC, Saba K, Sharif-Afshar AR, Makari JH, Bhowmick NA, et al. Directed differentiation of embryonic stem cells into bladder tissue. Dev Biol. 2007; 304:556–566.CrossRef Oottamasathien S, Wang Y, Williams K, Franco OE, Wills ML, Thomas JC, Saba K, Sharif-Afshar AR, Makari JH, Bhowmick NA, et al. Directed differentiation of embryonic stem cells into bladder tissue. Dev Biol. 2007; 304:556–566.CrossRef
54.
Zurück zum Zitat Anumanthan G, Makari JH, Honea L, Thomas JC, Wills ML, Bhowmick NA, Adams MC, Hayward SW, Matusik RJ, Brock JW III, et al. Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. J Urol. 2008; 180:1778–1783.CrossRef Anumanthan G, Makari JH, Honea L, Thomas JC, Wills ML, Bhowmick NA, Adams MC, Hayward SW, Matusik RJ, Brock JW III, et al. Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. J Urol. 2008; 180:1778–1783.CrossRef
55.
Zurück zum Zitat Chung SY, Krivorov NP, Rausei V, Thomas L, Frantzen M, Landsittel D, Kang YM, Chon CH, Ng CS, Fuchs GJ. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol. 2005; 174:353–359.CrossRef Chung SY, Krivorov NP, Rausei V, Thomas L, Frantzen M, Landsittel D, Kang YM, Chon CH, Ng CS, Fuchs GJ. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol. 2005; 174:353–359.CrossRef
56.
Zurück zum Zitat Shukla D, Box GN, Edwards RA, Tyson DR. Bone marrow stem cells for urologic tissue engineering. World J Urol. 2008; 26:341–349.CrossRef Shukla D, Box GN, Edwards RA, Tyson DR. Bone marrow stem cells for urologic tissue engineering. World J Urol. 2008; 26:341–349.CrossRef
57.
Zurück zum Zitat Lin F, Igarashi P. Searching for stem/progenitor cells in the adult mouse kidney. J Am Soc Nephrol. 2003; 14:3290–3292.CrossRef Lin F, Igarashi P. Searching for stem/progenitor cells in the adult mouse kidney. J Am Soc Nephrol. 2003; 14:3290–3292.CrossRef
58.
Zurück zum Zitat Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001; 195:229–235.CrossRef Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001; 195:229–235.CrossRef
59.
Zurück zum Zitat Chen J, Park HC, Addabbo F, Ni J, Pelger E, Li H, Plotkin M, Goligorsky MS. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 2008; 74:879–889.CrossRef Chen J, Park HC, Addabbo F, Ni J, Pelger E, Li H, Plotkin M, Goligorsky MS. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 2008; 74:879–889.CrossRef
60.
Zurück zum Zitat Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999; 17:451–455.CrossRef Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999; 17:451–455.CrossRef
61.
Zurück zum Zitat Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, Hofmeister E, Schuch G, Soker S, Moraes CT, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002; 20:689–696.CrossRef Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, Hofmeister E, Schuch G, Soker S, Moraes CT, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002; 20:689–696.CrossRef
62.
Zurück zum Zitat Minuth WW, Sorokin L, Schumacher K. Generation of renal tubules at the interface of an artificial interstitium. Cell Physiol Biochem. 2004; 14:387–394.CrossRef Minuth WW, Sorokin L, Schumacher K. Generation of renal tubules at the interface of an artificial interstitium. Cell Physiol Biochem. 2004; 14:387–394.CrossRef
63.
Zurück zum Zitat Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA. 1994; 91:11303–11307.CrossRef Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA. 1994; 91:11303–11307.CrossRef
64.
Zurück zum Zitat Lo KC, Lei Z, Rao ChV, Beck J, Lamb DJ. De novo testosterone production in luteinizing hormone receptor knockout mice after transplantation of leydig stem cells. Endocrinology 2004; 145:4011–4015.CrossRef Lo KC, Lei Z, Rao ChV, Beck J, Lamb DJ. De novo testosterone production in luteinizing hormone receptor knockout mice after transplantation of leydig stem cells. Endocrinology 2004; 145:4011–4015.CrossRef
65.
Zurück zum Zitat Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA. 2003; 100:11457–11462.CrossRef Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA. 2003; 100:11457–11462.CrossRef
66.
Zurück zum Zitat Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004; 427:148–154.CrossRef Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004; 427:148–154.CrossRef
67.
Zurück zum Zitat Furuta A, Carr LK, Yoshimura N, Chancellor MB. Advances in the understanding of sress urinary incontinence and the promise of stem-cell therapy. Rev Urol. 2007; 9:106–112. Furuta A, Carr LK, Yoshimura N, Chancellor MB. Advances in the understanding of sress urinary incontinence and the promise of stem-cell therapy. Rev Urol. 2007; 9:106–112.
68.
Zurück zum Zitat Cannon TW, Lee JY, Somogyi G, Pruchnic R, Smith CP, Huard J, Chancellor MB. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology. 2003; 62:958–963.CrossRef Cannon TW, Lee JY, Somogyi G, Pruchnic R, Smith CP, Huard J, Chancellor MB. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology. 2003; 62:958–963.CrossRef
69.
Zurück zum Zitat Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 2005; 23:1242–1250.CrossRef Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 2005; 23:1242–1250.CrossRef
70.
Zurück zum Zitat Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res. 2003; 34:461–475.CrossRef Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res. 2003; 34:461–475.CrossRef
71.
Zurück zum Zitat Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol. 2006; 174:249–282. Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol. 2006; 174:249–282.
72.
Zurück zum Zitat Shibata D, Tavare S. Counting divisions in a human somatic cell tree: how, what and why? Cell Cycle 2006; 5:610–614.CrossRef Shibata D, Tavare S. Counting divisions in a human somatic cell tree: how, what and why? Cell Cycle 2006; 5:610–614.CrossRef
73.
Zurück zum Zitat Diamond DA, Caldamone AA. Endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes: preliminary results. J Urol. 1999; 162:1185–1188.CrossRef Diamond DA, Caldamone AA. Endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes: preliminary results. J Urol. 1999; 162:1185–1188.CrossRef
74.
Zurück zum Zitat Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 2004; 25:5743–5751.CrossRef Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 2004; 25:5743–5751.CrossRef
75.
Zurück zum Zitat Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005; 19:1129–1155.CrossRef Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005; 19:1129–1155.CrossRef
Metadaten
Titel
Stem Cells in Tissue Engineering and Cell Therapies of Urological Defects
verfasst von
Christoph Becker
Katrin Montzka
Gerhard Jakse
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-11865-4_15

Neuer Inhalt