Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Steps Towards a Sustainable Hydrogen Production from Sunlight and Water

verfasst von : Carminna Ottone, Simelys Hernández, Marco Armandi, Barbara Bonelli

Erschienen in: Testing Novel Water Oxidation Catalysts for Solar Fuels Production

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter focuses on some aspects concerning the realization of an actually sustainable H2 production, and especially the need for earth abundant, environmental friendly, solar driven heterogeneous catalysis for the Water Oxidation reaction: the catalyst shall be thermodynamically and mechanically stable to allow cyclic long-term operations. The focus will be mainly on Mn- and Co-compounds, though reference will be made to other compounds, when appropriate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hunter BM, Gray HB, Müller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116(22):14120–14136CrossRef Hunter BM, Gray HB, Müller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116(22):14120–14136CrossRef
2.
Zurück zum Zitat Singh A, Spiccia L (2013) Water oxidation catalysts based on abundant 1st row transition metals. Coord Chem Rev 257(17–18):2607–2622CrossRef Singh A, Spiccia L (2013) Water oxidation catalysts based on abundant 1st row transition metals. Coord Chem Rev 257(17–18):2607–2622CrossRef
3.
Zurück zum Zitat Najafpour MM et al (2012) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J R Soc Interface 9(75):2383–2395CrossRef Najafpour MM et al (2012) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J R Soc Interface 9(75):2383–2395CrossRef
4.
Zurück zum Zitat Wells AF (2012) Structural inorganic chemistry. Oxford University Press, Oxford Wells AF (2012) Structural inorganic chemistry. Oxford University Press, Oxford
5.
Zurück zum Zitat Robinson DM et al (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135(9):3494–3501CrossRef Robinson DM et al (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135(9):3494–3501CrossRef
6.
Zurück zum Zitat Xu M-W, Bao S-J (2011) Nanostructured MnO2 for electrochemical capacitor. In: Carbone R (ed) Energy storage in the emerging era of smart grids. Intech Xu M-W, Bao S-J (2011) Nanostructured MnO2 for electrochemical capacitor. In: Carbone R (ed) Energy storage in the emerging era of smart grids. Intech
7.
Zurück zum Zitat Chabre Y, Pannetier J (1995) Structural and electrochemical properties of the proton/γ-MnO2 system. Prog Solid State Chem 23(1):1–130CrossRef Chabre Y, Pannetier J (1995) Structural and electrochemical properties of the proton/γ-MnO2 system. Prog Solid State Chem 23(1):1–130CrossRef
8.
Zurück zum Zitat Najafpour MM, Sedigh DJ (2013) Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication. Dalton Trans 42(34):12173–12178CrossRef Najafpour MM, Sedigh DJ (2013) Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication. Dalton Trans 42(34):12173–12178CrossRef
9.
Zurück zum Zitat Brimblecombe R et al (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132(9):2892–2894CrossRef Brimblecombe R et al (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132(9):2892–2894CrossRef
10.
Zurück zum Zitat Harriman A et al (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc, Faraday Trans 1 Phys Chem Condens Phases 84(8):2795–2806CrossRef Harriman A et al (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc, Faraday Trans 1 Phys Chem Condens Phases 84(8):2795–2806CrossRef
11.
Zurück zum Zitat Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027CrossRef Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027CrossRef
12.
Zurück zum Zitat Iyer A et al (2012) Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures. J Phys Chem C 116(10):6474–6483CrossRef Iyer A et al (2012) Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures. J Phys Chem C 116(10):6474–6483CrossRef
13.
Zurück zum Zitat Bergmann A et al (2013) Electrochemical water splitting by layered and 3D cross-linked manganese oxides: correlating structural motifs and catalytic activity. Energy Environ Sci 6(9):2745–2755CrossRef Bergmann A et al (2013) Electrochemical water splitting by layered and 3D cross-linked manganese oxides: correlating structural motifs and catalytic activity. Energy Environ Sci 6(9):2745–2755CrossRef
14.
Zurück zum Zitat Zaharieva I et al (2012) Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ Sci 5(5):7081–7089CrossRef Zaharieva I et al (2012) Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ Sci 5(5):7081–7089CrossRef
15.
Zurück zum Zitat Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem Int Ed 48(10):1841–1844CrossRef Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem Int Ed 48(10):1841–1844CrossRef
16.
Zurück zum Zitat Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRef Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRef
17.
Zurück zum Zitat Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114CrossRef Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114CrossRef
18.
Zurück zum Zitat Wang Y et al (2012) Cobalt phosphate–ZnO composite photocatalysts for oxygen evolution from photocatalytic water oxidation. Ind Eng Chem Res 51(30):9945–9951CrossRef Wang Y et al (2012) Cobalt phosphate–ZnO composite photocatalysts for oxygen evolution from photocatalytic water oxidation. Ind Eng Chem Res 51(30):9945–9951CrossRef
19.
Zurück zum Zitat Lee R-L et al (2013) Assembling graphitic-carbon-nitride with cobalt-oxide-phosphate to construct an efficient hybrid photocatalyst for water splitting application. Catal Sci Technol 3(7):1694–1698CrossRef Lee R-L et al (2013) Assembling graphitic-carbon-nitride with cobalt-oxide-phosphate to construct an efficient hybrid photocatalyst for water splitting application. Catal Sci Technol 3(7):1694–1698CrossRef
20.
Zurück zum Zitat Liu L et al (2013) In situ loading transition metal oxide clusters on TiO2 nanosheets as co-catalysts for exceptional high photoactivity. ACS Catal 3(9):2052–2061CrossRef Liu L et al (2013) In situ loading transition metal oxide clusters on TiO2 nanosheets as co-catalysts for exceptional high photoactivity. ACS Catal 3(9):2052–2061CrossRef
21.
Zurück zum Zitat Zhang F et al (2012) Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc 134(20):8348–8351CrossRef Zhang F et al (2012) Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc 134(20):8348–8351CrossRef
22.
Zurück zum Zitat Kamata K et al (2009) Synthesis and photocatalytic activity of gallium–zinc–indium mixed oxynitride for hydrogen and oxygen evolution under visible light. Chem Phys Lett 470(1–3):90–94CrossRef Kamata K et al (2009) Synthesis and photocatalytic activity of gallium–zinc–indium mixed oxynitride for hydrogen and oxygen evolution under visible light. Chem Phys Lett 470(1–3):90–94CrossRef
23.
Zurück zum Zitat Zhang J et al (2012) Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chem Sci 3(2):443–446CrossRef Zhang J et al (2012) Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chem Sci 3(2):443–446CrossRef
24.
Zurück zum Zitat Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem, Int Ed Engl 30(1):34–48CrossRef Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem, Int Ed Engl 30(1):34–48CrossRef
25.
Zurück zum Zitat Yamase T, Pope MT (2002) Polyoxometalate chemistry for nano-composite design. Springer, Berlin Yamase T, Pope MT (2002) Polyoxometalate chemistry for nano-composite design. Springer, Berlin
26.
Zurück zum Zitat Howells AR, Sankarraj A, Shannon C (2004) A diruthenium-substituted polyoxometalate as an electrocatalyst for oxygen generation. J Am Chem Soc 126(39):12258–12259CrossRef Howells AR, Sankarraj A, Shannon C (2004) A diruthenium-substituted polyoxometalate as an electrocatalyst for oxygen generation. J Am Chem Soc 126(39):12258–12259CrossRef
27.
Zurück zum Zitat Geletii YV et al (2009) Structural, physicochemical, and reactivity properties of an all-inorganic, highly active tetraruthenium homogeneous catalyst for water oxidation. J Am Chem Soc 131(47):17360–17370CrossRef Geletii YV et al (2009) Structural, physicochemical, and reactivity properties of an all-inorganic, highly active tetraruthenium homogeneous catalyst for water oxidation. J Am Chem Soc 131(47):17360–17370CrossRef
28.
Zurück zum Zitat Sartorel A et al (2009) Water oxidation at a tetraruthenate core stabilized by polyoxometalate ligands: experimental and computational evidence to trace the competent intermediates. J Am Chem Soc 131(44):16051–16053CrossRef Sartorel A et al (2009) Water oxidation at a tetraruthenate core stabilized by polyoxometalate ligands: experimental and computational evidence to trace the competent intermediates. J Am Chem Soc 131(44):16051–16053CrossRef
29.
Zurück zum Zitat Toma FM et al (2010) Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat Chem 2(10):826–831CrossRef Toma FM et al (2010) Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat Chem 2(10):826–831CrossRef
30.
Zurück zum Zitat Yin Q et al (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328(5976):342–345CrossRef Yin Q et al (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328(5976):342–345CrossRef
31.
Zurück zum Zitat Steinmiller EMP, Choi KS (2009) Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc Natl Acad Sci 106(49):20633–20636CrossRef Steinmiller EMP, Choi KS (2009) Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc Natl Acad Sci 106(49):20633–20636CrossRef
32.
Zurück zum Zitat Zhu G et al (2012) Water oxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(µ-OH)(H2O)3}(Si2W19O70)]11. Dalton Trans 41(7):2084–2090CrossRef Zhu G et al (2012) Water oxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(µ-OH)(H2O)3}(Si2W19O70)]11. Dalton Trans 41(7):2084–2090CrossRef
33.
Zurück zum Zitat Izgorodin A, Winther-Jensen O, MacFarlane DR (2012) On the stability of water oxidation catalysts: challenges and prospects. Aust J Chem 65(6):638–642CrossRef Izgorodin A, Winther-Jensen O, MacFarlane DR (2012) On the stability of water oxidation catalysts: challenges and prospects. Aust J Chem 65(6):638–642CrossRef
34.
Zurück zum Zitat Beer H (1980) The invention and industrial development of metal anodes. J Electrochem Soc 127(8):303C–307CCrossRef Beer H (1980) The invention and industrial development of metal anodes. J Electrochem Soc 127(8):303C–307CCrossRef
35.
Zurück zum Zitat Trasatti S (2000) Electrocatalysis: understanding the success of DSA®. Electrochim Acta 45(15):2377–2385CrossRef Trasatti S (2000) Electrocatalysis: understanding the success of DSA®. Electrochim Acta 45(15):2377–2385CrossRef
36.
Zurück zum Zitat Najafpour MM et al (2015) Damage management in water-oxidizing catalysts: from photosystem II to nanosized metal oxides. ACS Catal 5(3):1499–1512CrossRef Najafpour MM et al (2015) Damage management in water-oxidizing catalysts: from photosystem II to nanosized metal oxides. ACS Catal 5(3):1499–1512CrossRef
37.
Zurück zum Zitat Amendola V, Meneghetti M (2009) Self-healing at the nanoscale. Nanoscale 1(1):74–88CrossRef Amendola V, Meneghetti M (2009) Self-healing at the nanoscale. Nanoscale 1(1):74–88CrossRef
38.
Zurück zum Zitat Najafpour MM et al (2015) Self-healing for nanolayered manganese oxides in the presence of cerium(IV) ammonium nitrate: new findings. New J Chem 39(4):2547–2550CrossRef Najafpour MM et al (2015) Self-healing for nanolayered manganese oxides in the presence of cerium(IV) ammonium nitrate: new findings. New J Chem 39(4):2547–2550CrossRef
39.
Zurück zum Zitat Gerken JB et al (2011) Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J Am Chem Soc 133(36):14431–14442CrossRef Gerken JB et al (2011) Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J Am Chem Soc 133(36):14431–14442CrossRef
40.
Zurück zum Zitat Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278CrossRef Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278CrossRef
41.
Zurück zum Zitat Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645–648CrossRef Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645–648CrossRef
42.
Zurück zum Zitat Sivula K, Formal FL, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4(4):432–449CrossRef Sivula K, Formal FL, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4(4):432–449CrossRef
43.
Zurück zum Zitat Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29(11):1503–1512CrossRef Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29(11):1503–1512CrossRef
Metadaten
Titel
Steps Towards a Sustainable Hydrogen Production from Sunlight and Water
verfasst von
Carminna Ottone
Simelys Hernández
Marco Armandi
Barbara Bonelli
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-12712-1_2