Skip to main content
Erschienen in: Polymer Bulletin 8/2017

24.12.2016 | Original Paper

Stereocomplex crystallization behavior and physical properties of polyesterurethane networks incorporating diglycerol-based enantiomeric 4-armed lactide oligomers and a 1,3-propanediol-based 2-armed rac-lactide oligomer

verfasst von: Ayaka Shibita, Yuta Mizumura, Mitsuhiro Shibata

Erschienen in: Polymer Bulletin | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The reactions of diglycerol-based 4-armed enantiomeric lactide oligomers (DG4LLAO and DG4DLAO, DGDLAO/DGLLAO = 1/1) and a 1,3-propanediol-based 2-armed rac-lactide oligomer (PD2racLAO) with hexamethylene diisocyanate produced bio-based polyesterurethane networks (PEU-DG4scLAO/PD2racLAOs) with different feed ratios of stereocomplex (sc) lactide oligomer (DG4scLAO = DG4DLAO + DG4LLAO) and PD2racLAO. Crystallization behavior and physical properties of PEU-DG4scLAO/PD2racLAOs were compared with those of the corresponding pentaerythritol- and glycerol-based polyesterurethane networks (PEU-PE4scLAO and PEU-GC4scLAO) with no PD2racLAO fraction. The X-ray diffraction analysis revealed that sc crystallites were formed without any homo-crystallization for PEU-DG4scLAO/PD2racLAOs 100/0-25/75 in a similar manner to PEU-PE4scLAO or PEU-GC3scLAO. Differential scanning calorimetric analysis for PEU-DG4scLAO/PD2racLAOs 100/0-25/75 revealed that the sc crystallites were not regenerated during a cold crystallization process of the quenched samples, but regenerated by isothermal crystallization from the melt. This result was a marked contrast to the previous result that sc crystallites were almost completely regenerated by the cold crystallization for PEU-PE4scLAO and PEU-GC3scLAO. Polarized optical microscopic analysis revealed that the incorporation of 25% of PD2racLAO enhanced the sc-nucleation efficiency, and further addition caused the reduction of overall crystallization. PEU-DG4scLAO/PD2racLAO 100/0 exhibited a higher elongation at break and tensile toughness than PEU-PE4scLAO and PEU-GC3scLAO. Tensile strength and elongation at break for PEU-DG4scLAO/PD2racLAOs decreased with increasing feed of PD2racLAO.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215CrossRef Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215CrossRef
2.
Zurück zum Zitat Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712CrossRef Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712CrossRef
4.
Zurück zum Zitat Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37CrossRef Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37CrossRef
5.
Zurück zum Zitat Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliver Rev. doi:10.1016/j.addr.2016.012 Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliver Rev. doi:10.​1016/​j.​addr.​2016.​012
6.
Zurück zum Zitat Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542CrossRef Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542CrossRef
7.
Zurück zum Zitat Yi Q, Wen X, Li L, He B, Nie Y, Wu Y, Zhang Z, Gu Z (2009) The chiral effects on the responses of osteoblastic cells to the polymeric substrates. Eur Polym J 45:1970–1978CrossRef Yi Q, Wen X, Li L, He B, Nie Y, Wu Y, Zhang Z, Gu Z (2009) The chiral effects on the responses of osteoblastic cells to the polymeric substrates. Eur Polym J 45:1970–1978CrossRef
8.
Zurück zum Zitat Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597CrossRef Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597CrossRef
10.
Zurück zum Zitat Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRef Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRef
11.
Zurück zum Zitat Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708CrossRef Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708CrossRef
12.
Zurück zum Zitat Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896CrossRef Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896CrossRef
13.
Zurück zum Zitat Tsuji H (2000) In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well-stereo-complexed blend and non-blended films. Polymer 41:3621–3630 Tsuji H (2000) In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well-stereo-complexed blend and non-blended films. Polymer 41:3621–3630
14.
Zurück zum Zitat Yui N, Dijkstra PJ, Feijen J (1990) Stereo block copolymers of l- and d-lactides. Macromol Chem 191:481–488CrossRef Yui N, Dijkstra PJ, Feijen J (1990) Stereo block copolymers of l- and d-lactides. Macromol Chem 191:481–488CrossRef
15.
Zurück zum Zitat Li L, Zhong Z, Jeu WH, Dijkstra PJ, Feijen J (2004) Crystal structure and morphology of poly(l-lactide-b-d-lactide) diblock copolymers. Macromolecules 37:8641–8646CrossRef Li L, Zhong Z, Jeu WH, Dijkstra PJ, Feijen J (2004) Crystal structure and morphology of poly(l-lactide-b-d-lactide) diblock copolymers. Macromolecules 37:8641–8646CrossRef
16.
Zurück zum Zitat Hu J, Tang Z, Qiu X, Pang X, Yang Y, Chen X, Jing X (2005) Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s. Biomacromolecules 6:2843–2850CrossRef Hu J, Tang Z, Qiu X, Pang X, Yang Y, Chen X, Jing X (2005) Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s. Biomacromolecules 6:2843–2850CrossRef
17.
Zurück zum Zitat Hirata M, Kobayashi K, Kimura Y (2010) Synthesis and properties of high-molecular-weight stereo di-block polylactides with nonequivalent D/L ratios. J Polym Sci, Part A: Polym Chem 48:794–801CrossRef Hirata M, Kobayashi K, Kimura Y (2010) Synthesis and properties of high-molecular-weight stereo di-block polylactides with nonequivalent D/L ratios. J Polym Sci, Part A: Polym Chem 48:794–801CrossRef
18.
Zurück zum Zitat Othma, N, Xu C, Mehrkhodavandi P. Hatzikiriakos SG (2012) Thermorheological and mechanical behavior of polylactide and its enantiomeric diblock copolymers and blends. Polymer 53:2443–2452 Othma, N, Xu C, Mehrkhodavandi P. Hatzikiriakos SG (2012) Thermorheological and mechanical behavior of polylactide and its enantiomeric diblock copolymers and blends. Polymer 53:2443–2452
19.
Zurück zum Zitat Aluthge DC, Xu C, Othman N, Noroozi N, Hatzikiriakos SG, Mehrkhodavandi P (2013) PLA–PHB–PLA Triblock copolymers: synthesis by sequential addition and investigation of mechanical and rheological properties. Macromolecules 46:3965–3974CrossRef Aluthge DC, Xu C, Othman N, Noroozi N, Hatzikiriakos SG, Mehrkhodavandi P (2013) PLA–PHB–PLA Triblock copolymers: synthesis by sequential addition and investigation of mechanical and rheological properties. Macromolecules 46:3965–3974CrossRef
20.
Zurück zum Zitat Tsuji H, Tajima T (2014) Crystallization behavior of stereo diblock poly(lactide)s with relatively short poly(d-lactide) segment from partially melted state. Macromol Mater Eng 299:1089–1105 Tsuji H, Tajima T (2014) Crystallization behavior of stereo diblock poly(lactide)s with relatively short poly(d-lactide) segment from partially melted state. Macromol Mater Eng 299:1089–1105
21.
Zurück zum Zitat Mincheva R, Leclére Ph, Habibi Y, Raquez JM, Dubois P (2014) Preparation of narrowly dispersed stereocomplex nanocrystals: a step towards all-poly(lactic acid) nanocomposites. J Mater Chem A 2:7402–7409CrossRef Mincheva R, Leclére Ph, Habibi Y, Raquez JM, Dubois P (2014) Preparation of narrowly dispersed stereocomplex nanocrystals: a step towards all-poly(lactic acid) nanocomposites. J Mater Chem A 2:7402–7409CrossRef
22.
Zurück zum Zitat Biela T, Duda A, Penczek S (2006) Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes. Macromolecules 39:3710–3713CrossRef Biela T, Duda A, Penczek S (2006) Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes. Macromolecules 39:3710–3713CrossRef
23.
Zurück zum Zitat Isono T, Kondo Y, Otsuka I, Nishiyama Y, Borsali R, Kakuchi T, Satoh T (2013) Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(l-lactide) and poly(d-lactide) arms. Macromolecules 46:8509–8518CrossRef Isono T, Kondo Y, Otsuka I, Nishiyama Y, Borsali R, Kakuchi T, Satoh T (2013) Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(l-lactide) and poly(d-lactide) arms. Macromolecules 46:8509–8518CrossRef
24.
Zurück zum Zitat Shao J, Tang Z, Sun J, Li G, Chen X (2014) Linear and 4-armed poly(l-lactide)-block-poly(d-lactide) copolymers and their stereocomplexation with poly(lactide). J Polym Sci, Part B: Polym Phys 52:1560–1567CrossRef Shao J, Tang Z, Sun J, Li G, Chen X (2014) Linear and 4-armed poly(l-lactide)-block-poly(d-lactide) copolymers and their stereocomplexation with poly(lactide). J Polym Sci, Part B: Polym Phys 52:1560–1567CrossRef
25.
Zurück zum Zitat Tsuji H, Yamashita Y (2014) Highly accelerated stereocomplex crystallization by blending star-shaped 4-armed stereo diblock poly(lactide)s with poly(d-lactide) and poly(l-lactide) cores. Polymer 55:6444–6450CrossRef Tsuji H, Yamashita Y (2014) Highly accelerated stereocomplex crystallization by blending star-shaped 4-armed stereo diblock poly(lactide)s with poly(d-lactide) and poly(l-lactide) cores. Polymer 55:6444–6450CrossRef
26.
Zurück zum Zitat Ma Y, Li W, Li L, Fan Z, Li S (2014) Stereocomplexed three-arm PPO–PDLA–PLLA copolymers: synthesis via an end-functionalized initiator. Eur Polym J 55:27–34CrossRef Ma Y, Li W, Li L, Fan Z, Li S (2014) Stereocomplexed three-arm PPO–PDLA–PLLA copolymers: synthesis via an end-functionalized initiator. Eur Polym J 55:27–34CrossRef
27.
Zurück zum Zitat Isono T, Kondo Y, Ozawa S, Chen Y, Sakai R, Sato S, Tajima K, Kakuchi T, Satoh T (2014) Stereoblock-like brush copolymers consisting of poly(l-lactide) and poly(d-lactide) side chains along poly(norbornene) backbone: synthesis, stereocomplex formation, and structure–property relationship. Macromolecules 47:7118–7128CrossRef Isono T, Kondo Y, Ozawa S, Chen Y, Sakai R, Sato S, Tajima K, Kakuchi T, Satoh T (2014) Stereoblock-like brush copolymers consisting of poly(l-lactide) and poly(d-lactide) side chains along poly(norbornene) backbone: synthesis, stereocomplex formation, and structure–property relationship. Macromolecules 47:7118–7128CrossRef
28.
Zurück zum Zitat Sugai N, Yamamoto T, Tezuka Y (2012) Synthesis of orientationally isomeric cyclic stereoblock polylactides with head-to-head and head-to-tail linkages of the enantiomeric segments. ACS Macro Lett 1:902–906CrossRef Sugai N, Yamamoto T, Tezuka Y (2012) Synthesis of orientationally isomeric cyclic stereoblock polylactides with head-to-head and head-to-tail linkages of the enantiomeric segments. ACS Macro Lett 1:902–906CrossRef
29.
Zurück zum Zitat Shibata M, Katoh M, Takase H, Shibita A (2015) Stereocomplex formation in stereoblock copolymer networks composed of 4-armed star-shaped lactide oligomers and a 2-armed ɛ-caprolactone oligomer. Polym Chem 6:4123–4132CrossRef Shibata M, Katoh M, Takase H, Shibita A (2015) Stereocomplex formation in stereoblock copolymer networks composed of 4-armed star-shaped lactide oligomers and a 2-armed ɛ-caprolactone oligomer. Polym Chem 6:4123–4132CrossRef
30.
Zurück zum Zitat Shibita A, Kawasaki S, Shimasaki T, Teramoto N, Shibata M (2016) Stereocomplexation in copolymer networks incorporating enantiomeric glycerol-based 3-armed lactide oligomers and a 2-armed ɛ-caprolactone oligomer. Materials 9:591. doi:10.3390/ma9070591 CrossRef Shibita A, Kawasaki S, Shimasaki T, Teramoto N, Shibata M (2016) Stereocomplexation in copolymer networks incorporating enantiomeric glycerol-based 3-armed lactide oligomers and a 2-armed ɛ-caprolactone oligomer. Materials 9:591. doi:10.​3390/​ma9070591 CrossRef
31.
Zurück zum Zitat Shibita A, Shimasaki T, Teramoto N, Shibata M (2015) Conetworks composed of 4-armed star-shaped l-lactide oligomer and 4-armed star-shaped ɛ-caprolactone oligomer. Polymer 74:54–62CrossRef Shibita A, Shimasaki T, Teramoto N, Shibata M (2015) Conetworks composed of 4-armed star-shaped l-lactide oligomer and 4-armed star-shaped ɛ-caprolactone oligomer. Polymer 74:54–62CrossRef
32.
Zurück zum Zitat Li Y, Han C, Zhang X, Dong Q, Dong L (2013) Effects of molten poly(d, l-lactide) on nonisothermal crystallization in stereocomplex of poly(l-lactide) with poly(d-lactide). Thermochim Acta 573:193–199CrossRef Li Y, Han C, Zhang X, Dong Q, Dong L (2013) Effects of molten poly(d, l-lactide) on nonisothermal crystallization in stereocomplex of poly(l-lactide) with poly(d-lactide). Thermochim Acta 573:193–199CrossRef
33.
Zurück zum Zitat Li Y, Han C, Bian XY, Dong Q, Zha H, Zhang X, Xu M, Dong L (2014) Miscibility, thermal properties and polymorphism of stereocomplexation of high-molecular-weight polylactide/poly(d, l-lactide) blends. Thermochim Acta 580:53–62CrossRef Li Y, Han C, Bian XY, Dong Q, Zha H, Zhang X, Xu M, Dong L (2014) Miscibility, thermal properties and polymorphism of stereocomplexation of high-molecular-weight polylactide/poly(d, l-lactide) blends. Thermochim Acta 580:53–62CrossRef
34.
Zurück zum Zitat Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromolecules 7:3316–3320CrossRef Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromolecules 7:3316–3320CrossRef
35.
Zurück zum Zitat Petchsuk A, Buchatip S, Supmak W, Opaprakasit M, Opaprakasit P (2014) Preparation and properties of multi-branched poly(d-lactide) derived from polyglycidol and its stereocomplex blends. Express Polym Lett 8:779–789CrossRef Petchsuk A, Buchatip S, Supmak W, Opaprakasit M, Opaprakasit P (2014) Preparation and properties of multi-branched poly(d-lactide) derived from polyglycidol and its stereocomplex blends. Express Polym Lett 8:779–789CrossRef
36.
Zurück zum Zitat Fukushima K, Kimura Y (2006) Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int 55:626–642CrossRef Fukushima K, Kimura Y (2006) Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int 55:626–642CrossRef
37.
Zurück zum Zitat Hoogsteen W, Postema AR, Pennings AJ, Brinke GT, Zugenmaier P (1990) Crystal structure, conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642CrossRef Hoogsteen W, Postema AR, Pennings AJ, Brinke GT, Zugenmaier P (1990) Crystal structure, conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642CrossRef
38.
Zurück zum Zitat Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Preparation and characterization of biodegradable PLA polymeric blends. Bimater 24:1167–1173CrossRef Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Preparation and characterization of biodegradable PLA polymeric blends. Bimater 24:1167–1173CrossRef
39.
Zurück zum Zitat Kopinke FD, Remmler M, Mackenzie K, Moder M, Wachsen O (1996) Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polym Degrad Stab 53:329–342CrossRef Kopinke FD, Remmler M, Mackenzie K, Moder M, Wachsen O (1996) Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polym Degrad Stab 53:329–342CrossRef
40.
Zurück zum Zitat Wachsen O, K. Reichert H, Kruger RP, Much H, Schulz G (1997) Thermal decomposition of biodegradable polyesters-III. Studies on the mechanisms of thermal degradation of oligo-l-lactide using SEC, LACCC and MALDI-TOF-MS. Polym Degrad Stab 55:225–231 Wachsen O, K. Reichert H, Kruger RP, Much H, Schulz G (1997) Thermal decomposition of biodegradable polyesters-III. Studies on the mechanisms of thermal degradation of oligo-l-lactide using SEC, LACCC and MALDI-TOF-MS. Polym Degrad Stab 55:225–231
Metadaten
Titel
Stereocomplex crystallization behavior and physical properties of polyesterurethane networks incorporating diglycerol-based enantiomeric 4-armed lactide oligomers and a 1,3-propanediol-based 2-armed rac-lactide oligomer
verfasst von
Ayaka Shibita
Yuta Mizumura
Mitsuhiro Shibata
Publikationsdatum
24.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 8/2017
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1890-1

Weitere Artikel der Ausgabe 8/2017

Polymer Bulletin 8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.