Skip to main content

2013 | OriginalPaper | Buchkapitel

4. Stimulus-Response Reliability of Biological Networks

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

If a network of cells is repeatedly driven by the same sustained, complex signal, will it give the same response each time? A system whose response is reproducible across repeated trials is said to be reliable. Reliability is of interest in, e.g., computational neuroscience because the degree to which a neuronal network is reliable constrains its ability to encode information via precise temporal patterns of spikes. This chapter reviews a body of work aimed at discovering network conditions and dynamical mechanisms that can affect the reliability of a network. A number of results are surveyed here, including a general condition for reliability and studies of specific mechanisms for reliable and unreliable behavior in concrete models. This work relies on qualitative arguments using random dynamical systems theory, in combination with systematic numerical simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Theta neurons can also model neurons operating in an excitable regime. The reliability of excitable theta neuron networks is studied in [22].
 
2
See, e.g., [5], but note that phase truncations can sometimes miss important dynamical effects [30], and their use in biological modeling should be carefully justified.
 
3
The fiber exponent can be defined exactly as in (4.6), but with the tangent vector v chosen to lie in the subspace tangent to each fiber; note these subspaces are invariant due to the skew product structure.
 
4
It is straightforward to show that there is always a unique modular decomposition connected by an acyclic graph that is “maximal” in the sense that it cannot be refined any further without introducing cycles into the quotient graph.
 
5
These results have been extended to certain nonlinear parabolic PDEs [32] and periodically-kicked homoclinic loops [37].
 
6
A rough estimate shows that when A = 2, each kick should be sufficient to drive the oscillator roughly 1/3 of the way around its cycle.
 
Literatur
1.
Zurück zum Zitat L. Arnold, Random Dynamical Systems (Springer, New York, 2003) L. Arnold, Random Dynamical Systems (Springer, New York, 2003)
2.
Zurück zum Zitat W. Bair, E. Zohary, W.T. Newsome, Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21(5), 1676–1697 (2001) W. Bair, E. Zohary, W.T. Newsome, Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21(5), 1676–1697 (2001)
3.
Zurück zum Zitat P.H. Baxendale, Stability and equilibrium properties of stochastic flows of diffeomorphisms, in Progress in Probability, vol. 27 (Birkhauser, Basel, 1992) P.H. Baxendale, Stability and equilibrium properties of stochastic flows of diffeomorphisms, in Progress in Probability, vol. 27 (Birkhauser, Basel, 1992)
4.
Zurück zum Zitat M. Berry, D. Warland, M. Meister, The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. 94, 5411–5416 (1997)CrossRef M. Berry, D. Warland, M. Meister, The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. 94, 5411–5416 (1997)CrossRef
5.
Zurück zum Zitat E. Brown, P. Holmes, J. Moehlis, Globally coupled oscillator networks, in Problems and Perspectives in Nonlinear Science: A celebratory volume in honor of Lawrence Sirovich, ed. by E. Kaplan, J.E. Marsden, K.R. Sreenivasan (Springer, New York, 2003), pp. 183–215CrossRef E. Brown, P. Holmes, J. Moehlis, Globally coupled oscillator networks, in Problems and Perspectives in Nonlinear Science: A celebratory volume in honor of Lawrence Sirovich, ed. by E. Kaplan, J.E. Marsden, K.R. Sreenivasan (Springer, New York, 2003), pp. 183–215CrossRef
6.
Zurück zum Zitat H.L. Bryant, J.P. Segundo, Spike initiation by transmembrane current: a white-noise analysis. J. Physiol. 260, 279–314 (1976) H.L. Bryant, J.P. Segundo, Spike initiation by transmembrane current: a white-noise analysis. J. Physiol. 260, 279–314 (1976)
7.
Zurück zum Zitat R. de Reuter van Steveninck, R. Lewen, S. Strong, R. Koberle, W. Bialek, Reproducibility and variability in neuronal spike trains. Science 275, 1805–1808 (1997)CrossRef R. de Reuter van Steveninck, R. Lewen, S. Strong, R. Koberle, W. Bialek, Reproducibility and variability in neuronal spike trains. Science 275, 1805–1808 (1997)CrossRef
8.
Zurück zum Zitat R.E.L. Deville, N. Sri Namachchivaya, Z. Rapti, Stability of a stochastic two-dimensional non-Hamiltonian system. SIAM J. Appl. Math. 71, 1458–1475 (2011)CrossRefMATHMathSciNet R.E.L. Deville, N. Sri Namachchivaya, Z. Rapti, Stability of a stochastic two-dimensional non-Hamiltonian system. SIAM J. Appl. Math. 71, 1458–1475 (2011)CrossRefMATHMathSciNet
9.
Zurück zum Zitat A.S. Ecker, P. Berens, G.A. Keliris, M. Bethge, N.K. Logothetis, A.S. Tolias. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010)CrossRef A.S. Ecker, P. Berens, G.A. Keliris, M. Bethge, N.K. Logothetis, A.S. Tolias. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010)CrossRef
11.
Zurück zum Zitat G.B. Ermentrout, Type I membranes, phase resetting curves and synchrony. Neural Comput. 8, 979–1001 (1996)CrossRef G.B. Ermentrout, Type I membranes, phase resetting curves and synchrony. Neural Comput. 8, 979–1001 (1996)CrossRef
12.
Zurück zum Zitat G.B. Ermentrout, D. Terman, Foundations of Mathematical Neuroscience (Springer, Berlin, 2010)CrossRefMATH G.B. Ermentrout, D. Terman, Foundations of Mathematical Neuroscience (Springer, Berlin, 2010)CrossRefMATH
13.
Zurück zum Zitat A.A. Faisal, L.P.J. Selen, D.M. Wolpert, Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)CrossRef A.A. Faisal, L.P.J. Selen, D.M. Wolpert, Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)CrossRef
14.
Zurück zum Zitat J.-M. Fellous, P.H.E. Tiesinga, P.J. Thomas, T.J. Sejnowski, Discovering spike patterns in neuronal responses. J. Neurosci. 24, 2989–3001 (2004)CrossRef J.-M. Fellous, P.H.E. Tiesinga, P.J. Thomas, T.J. Sejnowski, Discovering spike patterns in neuronal responses. J. Neurosci. 24, 2989–3001 (2004)CrossRef
15.
Zurück zum Zitat D. Goldobin, A. Pikovsky, Antireliability of noise-driven neurons. Phys. Rev. E 73, 061906-1–061906-4 (2006) D. Goldobin, A. Pikovsky, Antireliability of noise-driven neurons. Phys. Rev. E 73, 061906-1–061906-4 (2006)
16.
Zurück zum Zitat J. Hunter, J. Milton, P. Thomas, J. Cowan, Resonance effect for neural spike time reliability. J.Ñeurophysiol. 80, 1427–1438 (1998) J. Hunter, J. Milton, P. Thomas, J. Cowan, Resonance effect for neural spike time reliability. J.Ñeurophysiol. 80, 1427–1438 (1998)
17.
Zurück zum Zitat P. Kara, P. Reinagel, R.C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 636–646 (2000)CrossRef P. Kara, P. Reinagel, R.C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 636–646 (2000)CrossRef
18.
19.
Zurück zum Zitat P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, New York, 2011) P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, New York, 2011)
20.
Zurück zum Zitat E. Kosmidis, K. Pakdaman, Analysis of reliability in the Fitzhugh–Nagumo neuron model. J.C̃omput. Neurosci. 14, 5–22 (2003) E. Kosmidis, K. Pakdaman, Analysis of reliability in the Fitzhugh–Nagumo neuron model. J.C̃omput. Neurosci. 14, 5–22 (2003)
21.
Zurück zum Zitat H. Kunita, Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics, vol. 24 (Cambridge University Press, Cambridge, 1990) H. Kunita, Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics, vol. 24 (Cambridge University Press, Cambridge, 1990)
22.
Zurück zum Zitat G. Lajoie, K.K. Lin, E. Shea-Brown, Chaos and reliability in balanced spiking networks with temporal drive. Phys. Rev. E 87 (2013) G. Lajoie, K.K. Lin, E. Shea-Brown, Chaos and reliability in balanced spiking networks with temporal drive. Phys. Rev. E 87 (2013)
23.
Zurück zum Zitat Y. Le Jan. Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Stat. 23(1), 111–120 (1987)MATHMathSciNet Y. Le Jan. Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Stat. 23(1), 111–120 (1987)MATHMathSciNet
24.
26.
28.
Zurück zum Zitat K.K. Lin, E. Shea-Brown, L.-S. Young, Spike-time reliability of layered neural oscillator networks. J. Comput. Neurosci. 27, 135–160 (2009)CrossRefMathSciNet K.K. Lin, E. Shea-Brown, L.-S. Young, Spike-time reliability of layered neural oscillator networks. J. Comput. Neurosci. 27, 135–160 (2009)CrossRefMathSciNet
29.
Zurück zum Zitat K.K. Lin, E. Shea-Brown, L.-S. Young, Reliability of layered neural oscillator networks. Commun. Math. Sci. 7, 239–247 (2009)CrossRefMATHMathSciNet K.K. Lin, E. Shea-Brown, L.-S. Young, Reliability of layered neural oscillator networks. Commun. Math. Sci. 7, 239–247 (2009)CrossRefMATHMathSciNet
30.
Zurück zum Zitat K.K. Lin, K.C.A. Wedgwood, S. Coombes, L.-S. Young, Limitations of perturbative techniques in the analysis of rhythms and oscillations. J. Math. Biol. 66, 139–161 (2013)CrossRefMATHMathSciNet K.K. Lin, K.C.A. Wedgwood, S. Coombes, L.-S. Young, Limitations of perturbative techniques in the analysis of rhythms and oscillations. J. Math. Biol. 66, 139–161 (2013)CrossRefMATHMathSciNet
31.
Zurück zum Zitat T. Lu, L. Liang, X. Wang, Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4, 1131–1138 (2001)CrossRef T. Lu, L. Liang, X. Wang, Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4, 1131–1138 (2001)CrossRef
32.
Zurück zum Zitat K. Lu, Q. Wang, L.-S. Young, Strange Attractors for Periodically Forced Parabolic Equations. Memoirs of the AMS, American Mathematical Society, (Providence, Rhode Island, 2013) K. Lu, Q. Wang, L.-S. Young, Strange Attractors for Periodically Forced Parabolic Equations. Memoirs of the AMS, American Mathematical Society, (Providence, Rhode Island, 2013)
33.
Zurück zum Zitat Z. Mainen, T. Sejnowski, Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995)CrossRef Z. Mainen, T. Sejnowski, Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995)CrossRef
34.
Zurück zum Zitat G. Murphy, F. Rieke, Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52, 511–524 (2007)CrossRef G. Murphy, F. Rieke, Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52, 511–524 (2007)CrossRef
35.
Zurück zum Zitat H. Nakao, K. Arai, K. Nagai, Y. Tsubo, Y. Kuramoto. Synchrony of limit-cycle oscillators induced by random external impulses. Phys. Rev. E 72, 026220-1–026220-13 (2005) H. Nakao, K. Arai, K. Nagai, Y. Tsubo, Y. Kuramoto. Synchrony of limit-cycle oscillators induced by random external impulses. Phys. Rev. E 72, 026220-1–026220-13 (2005)
36.
Zurück zum Zitat D. Nualart, The Malliavin Calculus and Related Topics (Springer, Berlin, 2006)MATH D. Nualart, The Malliavin Calculus and Related Topics (Springer, Berlin, 2006)MATH
37.
Zurück zum Zitat W. Ott, Q. Wang, Dissipative homoclinic loops of two-dimensional maps and strange attractors with one direction of instability. Commun. Pure Appl. Math. 64, 1439–1496 (2011)MATHMathSciNet W. Ott, Q. Wang, Dissipative homoclinic loops of two-dimensional maps and strange attractors with one direction of instability. Commun. Pure Appl. Math. 64, 1439–1496 (2011)MATHMathSciNet
38.
Zurück zum Zitat K. Pakdaman, D. Mestivier, External noise synchronizes forced oscillators. Phys. Rev. E 64, 030901–030904 (2001)CrossRef K. Pakdaman, D. Mestivier, External noise synchronizes forced oscillators. Phys. Rev. E 64, 030901–030904 (2001)CrossRef
39.
Zurück zum Zitat J. Ritt, Evaluation of entrainment of a nonlinear neural oscillator to white noise. Phys. Rev. E 68, 041915–041921 (2003)CrossRefMathSciNet J. Ritt, Evaluation of entrainment of a nonlinear neural oscillator to white noise. Phys. Rev. E 68, 041915–041921 (2003)CrossRefMathSciNet
40.
Zurück zum Zitat J. Teramae, T. Fukai, Reliability of temporal coding on pulse-coupled networks of oscillators. arXiv:0708.0862v1 [nlin.AO] (2007) J. Teramae, T. Fukai, Reliability of temporal coding on pulse-coupled networks of oscillators. arXiv:0708.0862v1 [nlin.AO] (2007)
41.
Zurück zum Zitat J. Teramae, D. Tanaka, Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett. 93, 204103–204106 (2004)CrossRef J. Teramae, D. Tanaka, Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett. 93, 204103–204106 (2004)CrossRef
42.
Zurück zum Zitat A. Uchida, R. McAllister, R. Roy, Consistency of nonlinear system response to complex drive signals. Phys. Rev. Lett. 93, 244102 (2004)CrossRef A. Uchida, R. McAllister, R. Roy, Consistency of nonlinear system response to complex drive signals. Phys. Rev. Lett. 93, 244102 (2004)CrossRef
43.
Zurück zum Zitat B.P. Uberuaga, M. Anghel, A.F. Voter, Synchronization of trajectories in canonical molecular-dynamics simulations: observation, explanation, and exploitation. J. Chem. Phys. 120, 6363–6374 (2004)CrossRef B.P. Uberuaga, M. Anghel, A.F. Voter, Synchronization of trajectories in canonical molecular-dynamics simulations: observation, explanation, and exploitation. J. Chem. Phys. 120, 6363–6374 (2004)CrossRef
44.
Zurück zum Zitat S. Varigonda, T. Kalmar-Nagy, B. LaBarre, I. Mezić, Graph decomposition methods for uncertainty propagation in complex, nonlinear interconnected dynamical systems, in 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004) S. Varigonda, T. Kalmar-Nagy, B. LaBarre, I. Mezić, Graph decomposition methods for uncertainty propagation in complex, nonlinear interconnected dynamical systems, in 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004)
45.
47.
Zurück zum Zitat Q. Wang, L.-S. Young, Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun. Math. Phys. 240, 509–529 (2003)MATHMathSciNet Q. Wang, L.-S. Young, Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun. Math. Phys. 240, 509–529 (2003)MATHMathSciNet
50.
Zurück zum Zitat L.-S. Young, Ergodic theory of differentiable dynamical systems, in Real and Complex Dynamics, NATO ASI Series (Kluwer, Dordrecht, 1995), pp. 293–336 L.-S. Young, Ergodic theory of differentiable dynamical systems, in Real and Complex Dynamics, NATO ASI Series (Kluwer, Dordrecht, 1995), pp. 293–336
51.
Zurück zum Zitat L.-S. Young, What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5), 733–754 (2002)CrossRefMATH L.-S. Young, What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5), 733–754 (2002)CrossRefMATH
53.
Zurück zum Zitat C. Zhou, J. Kurths, Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 13, 401–409 (2003) C. Zhou, J. Kurths, Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 13, 401–409 (2003)
Metadaten
Titel
Stimulus-Response Reliability of Biological Networks
verfasst von
Kevin K. Lin
Copyright-Jahr
2013
DOI
https://doi.org/10.1007/978-3-319-03080-7_4