Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 6/2015

01.06.2015 | MODERN INDIVIDUAL MOBILITY

Stochastic comparative assessment of life-cycle greenhouse gas emissions from conventional and electric vehicles

verfasst von: Arash Noshadravan, Lynette Cheah, Richard Roth, Fausto Freire, Luis Dias, Jeremy Gregory

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Electric vehicles (EVs) are promoted due to their potential for reducing fuel consumption and greenhouse gas (GHG) emissions. A comparative life-cycle assessment (LCA) between different technologies should account for variation in the scenarios under which vehicles are operated in order to facilitate decision-making regarding the adoption and promotion of EVs. In this study, we compare life-cycle GHG emissions, in terms of CO2eq, of EVs and conventional internal combustion engine vehicles (ICEV) over a wide range of use-phase scenarios in the USA, aiming to identify the vehicles with lower GHG emissions and the key uncertainties regarding this impact.

Methods

An LCA model is used to propagate the uncertainty in the use phase into the greenhouse gas emissions of different powertrains available today for compact and midsize vehicles in the US market. Monte Carlo simulation is used to explore the parameter space and gather statistics about GHG emissions of those powertrains. Spearman’s partial rank correlation coefficient is used to assess the level of contribution of each input parameter to the variance of GHG intensity.

Results and discussion

Within the scenario space under study, battery electric vehicles are more likely to have the lowest GHG emissions when compared with other powertrains. The main drivers of variation in the GHG impact are driver aggressiveness (for all vehicles), charging location (for EVs), and fuel economy (for ICEVs).

Conclusions

The probabilistic approach developed and applied in this study enables an understanding of the overall variation in GHG footprint for different technologies currently available in the US market and can be used for a comparative assessment. Results identify the main drivers of variation and shed light on scenarios under which the adoption of current EVs can be environmentally beneficial from a GHG emissions standpoint.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Anair D, Mahmassani A (2012) State of charge: electric vehicles’ global warming emissions and fuel-cost savings across the United States. UCS Publications, Cambridge, MA Anair D, Mahmassani A (2012) State of charge: electric vehicles’ global warming emissions and fuel-cost savings across the United States. UCS Publications, Cambridge, MA
Zurück zum Zitat Bandivadekar A (2008) Evaluating the impact of advanced vehicle and fuel technologies in US light-duty vehicle fleet. Ph.D. thesis, Massachusetts Institute of Technology Bandivadekar A (2008) Evaluating the impact of advanced vehicle and fuel technologies in US light-duty vehicle fleet. Ph.D. thesis, Massachusetts Institute of Technology
Zurück zum Zitat Bandivadekar A, Bodek K, Cheah L, Evans C, Groode T, Heywood J, Kasseris E, Kromer M, Weiss M (2008) On the road in 2035: reducing transportation’s petroleum consumption and GHG emissions. MIT report # LFEE 2008-05 RP, Massachusetts Institute of Technology, Boston, MA, USA Bandivadekar A, Bodek K, Cheah L, Evans C, Groode T, Heywood J, Kasseris E, Kromer M, Weiss M (2008) On the road in 2035: reducing transportation’s petroleum consumption and GHG emissions. MIT report # LFEE 2008-05 RP, Massachusetts Institute of Technology, Boston, MA, USA
Zurück zum Zitat Baptista P, Silva C, Farias T, Gonçalves G (2009) Full life cycle analysis of market penetration of electricity based vehicles. World Electr Veh J 3:1–6 Baptista P, Silva C, Farias T, Gonçalves G (2009) Full life cycle analysis of market penetration of electricity based vehicles. World Electr Veh J 3:1–6
Zurück zum Zitat Burnham A, Wang M, Wu Y (2006) Development and applications of GREET 2.7—the transportation vehicle-cycle model. Tech. Rep., ANL/ESD/06–5, Argonne National Lab., IL, USA Burnham A, Wang M, Wu Y (2006) Development and applications of GREET 2.7—the transportation vehicle-cycle model. Tech. Rep., ANL/ESD/06–5, Argonne National Lab., IL, USA
Zurück zum Zitat Carlson R, Lohse-Busch H, Duoba M, Shidore N (2009) Drive cycle fuel consumption variability of plug-in hybrid electric vehicle due to aggressive driving. SAE Technical Paper 2009-01-1335 Carlson R, Lohse-Busch H, Duoba M, Shidore N (2009) Drive cycle fuel consumption variability of plug-in hybrid electric vehicle due to aggressive driving. SAE Technical Paper 2009-01-1335
Zurück zum Zitat Cheah L (2013) Use phase parameter variation and uncertainty in LCA: automobile case study. In: Nee AYC et al. (eds) Re-engineering manufacturing for sustainability. Springer, Singapore, pp 553–557 Cheah L (2013) Use phase parameter variation and uncertainty in LCA: automobile case study. In: Nee AYC et al. (eds) Re-engineering manufacturing for sustainability. Springer, Singapore, pp 553–557
Zurück zum Zitat Doucette R, McCulloch M (2011) Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries. Energ Policy 39(2):803–811CrossRef Doucette R, McCulloch M (2011) Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries. Energ Policy 39(2):803–811CrossRef
Zurück zum Zitat Duoba M, Lohse-Busch H, Bohn T (2005) Investigating vehicle fuel economy robustness of conventional and hybrid electric vehicles. In: Proceedings of the 21st Worldwide Battery, Hybrid and Fuel-Cell Electric Vehiche Symposium and Exposition (EVS-21) Duoba M, Lohse-Busch H, Bohn T (2005) Investigating vehicle fuel economy robustness of conventional and hybrid electric vehicles. In: Proceedings of the 21st Worldwide Battery, Hybrid and Fuel-Cell Electric Vehiche Symposium and Exposition (EVS-21)
Zurück zum Zitat Earleywine M, Gonder J, Markel T, Thornton M (2010) Simulated fuel economy and performance of advanced hybrid electric and plug-in hybrid electric vehicles using in-use travel profiles. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, IEEE, pp 1–6 Earleywine M, Gonder J, Markel T, Thornton M (2010) Simulated fuel economy and performance of advanced hybrid electric and plug-in hybrid electric vehicles using in-use travel profiles. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, IEEE, pp 1–6
Zurück zum Zitat Elgowainy A, Han J, Poch L, Wang M, Vyas A, Mahalik M, Rousseau A (2010) Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles. Tech. Rep., ANL/ESD/09–2, Argonne National Lab., IL, USA Elgowainy A, Han J, Poch L, Wang M, Vyas A, Mahalik M, Rousseau A (2010) Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles. Tech. Rep., ANL/ESD/09–2, Argonne National Lab., IL, USA
Zurück zum Zitat Freire F, Marques P (2012) Electric vehicles in Portugal: an integrated energy, greenhouse gas and cost life-cycle analysis. In: Sustainable Systems and Technology (ISSST), 2012 I.E. International Symposium on, IEEE, pp 1–6 Freire F, Marques P (2012) Electric vehicles in Portugal: an integrated energy, greenhouse gas and cost life-cycle analysis. In: Sustainable Systems and Technology (ISSST), 2012 I.E. International Symposium on, IEEE, pp 1–6
Zurück zum Zitat Hamby D (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154CrossRef Hamby D (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154CrossRef
Zurück zum Zitat Hawkins T, Gausen O, Strømman A (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17:1–18CrossRef Hawkins T, Gausen O, Strømman A (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17:1–18CrossRef
Zurück zum Zitat Hawkins T, Singh B, Majeau-Bettez G, Strømman A (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef Hawkins T, Singh B, Majeau-Bettez G, Strømman A (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef
Zurück zum Zitat Hu P, Reuscher T (2004) Summary of travel trends: 2001 national household travel survey (NHTS), Tech. Rep Hu P, Reuscher T (2004) Summary of travel trends: 2001 national household travel survey (NHTS), Tech. Rep
Zurück zum Zitat Huijbregts MA, Gilijamse W, Ragas AM, Reijnders L (2003) Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling. Environ Sci Technol 37(11):2600–2608CrossRef Huijbregts MA, Gilijamse W, Ragas AM, Reijnders L (2003) Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling. Environ Sci Technol 37(11):2600–2608CrossRef
Zurück zum Zitat JD Power (2010) Drive Green 2020: more hope than reality. JD Power and Associates, Tech. Rep., McGraw-Hill, New York, USA JD Power (2010) Drive Green 2020: more hope than reality. JD Power and Associates, Tech. Rep., McGraw-Hill, New York, USA
Zurück zum Zitat Kocoloski M, Mullins KA, Venkatesh A, Griffin WM (2013) Addressing uncertainty in life-cycle carbon intensity in a national low-carbon fuel standard. Energy Policy 56, May 2013, pp 41–50 Kocoloski M, Mullins KA, Venkatesh A, Griffin WM (2013) Addressing uncertainty in life-cycle carbon intensity in a national low-carbon fuel standard. Energy Policy 56, May 2013, pp 41–50
Zurück zum Zitat Lave L, Hendrickson C, McMichael F (1995) Environmental implications of electric cars. Science 268(5213):993–995CrossRef Lave L, Hendrickson C, McMichael F (1995) Environmental implications of electric cars. Science 268(5213):993–995CrossRef
Zurück zum Zitat LeBlanc D, Sivak M, Bogard S (2010) Using naturalistic driving data to assess variations in fuel efficiency among individual drivers. Tech. Rep., Report UMTRI-2010-34, The University of Michigan Transportation Research Institute LeBlanc D, Sivak M, Bogard S (2010) Using naturalistic driving data to assess variations in fuel efficiency among individual drivers. Tech. Rep., Report UMTRI-2010-34, The University of Michigan Transportation Research Institute
Zurück zum Zitat Ma H, Balthasar F, Tait N, Riera-Palou X, Harrison A (2012) A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energ Policy 44(1):160–173CrossRef Ma H, Balthasar F, Tait N, Riera-Palou X, Harrison A (2012) A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energ Policy 44(1):160–173CrossRef
Zurück zum Zitat Mock P, German J, Bandivadekar A, Riemersma I (2012) Discrepancies between type-approval and “real-world” fuel consumption and CO2 values: assessment for 2001–2011 European passenger cars. International Council for Clean Transportation, Working paper 2012–2 Mock P, German J, Bandivadekar A, Riemersma I (2012) Discrepancies between type-approval and “real-world” fuel consumption and CO2 values: assessment for 2001–2011 European passenger cars. International Council for Clean Transportation, Working paper 2012–2
Zurück zum Zitat Nansai K, Tohno S, Kono M, Kasahara M (2002) Effects of electric vehicles (EV) on environmental loads with consideration of regional differences of electric power generation and charging characteristic of EV users in Japan. Appl Energy 71(2):111–125CrossRef Nansai K, Tohno S, Kono M, Kasahara M (2002) Effects of electric vehicles (EV) on environmental loads with consideration of regional differences of electric power generation and charging characteristic of EV users in Japan. Appl Energy 71(2):111–125CrossRef
Zurück zum Zitat Raykin L, Roorda M, MacLean H (2012) Impacts of driving patterns on tank-to-wheel energy use of plug-in hybrid electric vehicles. Transp Res Part D Transp Environ 17(3):243–250CrossRef Raykin L, Roorda M, MacLean H (2012) Impacts of driving patterns on tank-to-wheel energy use of plug-in hybrid electric vehicles. Transp Res Part D Transp Environ 17(3):243–250CrossRef
Zurück zum Zitat Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42(9):3170–3176CrossRef Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42(9):3170–3176CrossRef
Zurück zum Zitat Santos A, McGuckin N, Nakamoto H, Gray D, Liss S (2011) Summary of travel trends: 2009 National Household Travel Survey. Tech. Rep., US Department of Transportation Santos A, McGuckin N, Nakamoto H, Gray D, Liss S (2011) Summary of travel trends: 2009 National Household Travel Survey. Tech. Rep., US Department of Transportation
Zurück zum Zitat Schrank D, Lomax T, Eisele B TTI’s (2011) 2011 urban mobility report-powered by INRIX Traffic Data, Texas Transportation Institute, The Texas A&M University System, College Station, TX, USA Schrank D, Lomax T, Eisele B TTI’s (2011) 2011 urban mobility report-powered by INRIX Traffic Data, Texas Transportation Institute, The Texas A&M University System, College Station, TX, USA
Zurück zum Zitat Silva C, Ross M, Farias T (2009) Evaluation of energy consumption, emissions and cost of plug-in hybrid vehicles. Energ Convers Manage 50(7):1635–1643CrossRef Silva C, Ross M, Farias T (2009) Evaluation of energy consumption, emissions and cost of plug-in hybrid vehicles. Energ Convers Manage 50(7):1635–1643CrossRef
Zurück zum Zitat Singh M (1998) Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Tech. Rep., ANL/ES/RP–96387-Vol.3, Argonne National Lab., IL, USA Singh M (1998) Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Tech. Rep., ANL/ES/RP–96387-Vol.3, Argonne National Lab., IL, USA
Zurück zum Zitat Sullivan J, Williams R, Yester S, Cobas-Flores E, Chubbs S, Hentges S, Pomper S (1998) S. of automotive engineers, life cycle inventory of a generic U.S. family sedan: overview of results. USCAR AMP Project, SAE technical paper series, Society of Automotive Engineers Sullivan J, Williams R, Yester S, Cobas-Flores E, Chubbs S, Hentges S, Pomper S (1998) S. of automotive engineers, life cycle inventory of a generic U.S. family sedan: overview of results. USCAR AMP Project, SAE technical paper series, Society of Automotive Engineers
Zurück zum Zitat Wang M, Plotkin S, Santini D, He J, Gaines L, Patterson P (1997) Total energy-cycle energy and emissions impacts of hybrid electric vehicles. Tech. Rep., ANL/ES/CP–94277, Argonne National Lab., IL, USA Wang M, Plotkin S, Santini D, He J, Gaines L, Patterson P (1997) Total energy-cycle energy and emissions impacts of hybrid electric vehicles. Tech. Rep., ANL/ES/CP–94277, Argonne National Lab., IL, USA
Metadaten
Titel
Stochastic comparative assessment of life-cycle greenhouse gas emissions from conventional and electric vehicles
verfasst von
Arash Noshadravan
Lynette Cheah
Richard Roth
Fausto Freire
Luis Dias
Jeremy Gregory
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 6/2015
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-015-0866-y

Weitere Artikel der Ausgabe 6/2015

The International Journal of Life Cycle Assessment 6/2015 Zur Ausgabe