Skip to main content

2011 | OriginalPaper | Buchkapitel

13. Stochastic Detection of Terrorist Agents and Biomolecules in a Biological Channel

verfasst von : Xiyun Guan, Ranulu Samanthi S. de Zoysa, Dilani A. Jayawardhana, Qitao Zhao

Erschienen in: Nanopores

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stochastic sensing can detect analytes at the single-molecule level, in which a biological ion channel embedded in a lipid bilayer or a nano-scale sized pore fabricated in a solid-state membrane is used as the sensing element. By monitoring the ionic current modulations induced by the passage of the target analyte through the single pore, both the concentration and the identity of the analyte can be revealed. In this chapter, we highlight recent advances in the stochastic detection of terrorist agents and biomolecules, and in real-world sample analysis using alpha-hemolysin protein ion channels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bayley, H.; Cremer, P. S. Stochastic sensors inspired by biology. Nature 2001, 413, 226–230. Bayley, H.; Cremer, P. S. Stochastic sensors inspired by biology. Nature 2001, 413, 226–230.
2.
3.
Zurück zum Zitat Zhao, Q.; Jayawardhana, D. A.; Wang, D.; Guan, X. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 2009, 113, 3572–3578.CrossRef Zhao, Q.; Jayawardhana, D. A.; Wang, D.; Guan, X. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 2009, 113, 3572–3578.CrossRef
4.
Zurück zum Zitat Song, L.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J. E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996, 274, 1859–1866.CrossRef Song, L.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J. E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996, 274, 1859–1866.CrossRef
5.
Zurück zum Zitat Conlan, S.; Zhang, Y.; Cheley, S.; Bayley, H. Biochemical and biophysical characterization of OmpG: A monomeric porin. Biochemistry 2000, 39, 11845–11854.CrossRef Conlan, S.; Zhang, Y.; Cheley, S.; Bayley, H. Biochemical and biophysical characterization of OmpG: A monomeric porin. Biochemistry 2000, 39, 11845–11854.CrossRef
6.
Zurück zum Zitat Miles, G.; Cheley, S.; Braha, O.; Bayley, H. The staphylococcal leukocidin bicomponent toxin forms large ionic channels. Biochemistry 2001, 40, 8514–8522.CrossRef Miles, G.; Cheley, S.; Braha, O.; Bayley, H. The staphylococcal leukocidin bicomponent toxin forms large ionic channels. Biochemistry 2001, 40, 8514–8522.CrossRef
7.
Zurück zum Zitat Braha, O.; Gu, L.-Q.; Zhou, L.; Lu, X.; Cheley, S.; Bayley, H. Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol. 2000, 17, 1005–1007.CrossRef Braha, O.; Gu, L.-Q.; Zhou, L.; Lu, X.; Cheley, S.; Bayley, H. Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol. 2000, 17, 1005–1007.CrossRef
8.
Zurück zum Zitat Braha, O.; Walker, B.; Cheley, S.; Kasianowicz, J. J.; Song, L.; Gouaux, J. E.; Bayley, H. Designed protein pores as components for biosensors. Chem. Biol. 1997, 4, 497–505.CrossRef Braha, O.; Walker, B.; Cheley, S.; Kasianowicz, J. J.; Song, L.; Gouaux, J. E.; Bayley, H. Designed protein pores as components for biosensors. Chem. Biol. 1997, 4, 497–505.CrossRef
9.
Zurück zum Zitat Cheley, S.; Gu, L.-Q.; Bayley, H. Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem. Biol. 2002, 9, 829–838.CrossRef Cheley, S.; Gu, L.-Q.; Bayley, H. Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem. Biol. 2002, 9, 829–838.CrossRef
10.
Zurück zum Zitat Gu, L.-Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 1999, 398, 686–690.CrossRef Gu, L.-Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 1999, 398, 686–690.CrossRef
11.
Zurück zum Zitat Shin, S.-H.; Luchian, T.; Cheley, S.; Braha, O.; Bayley, H. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 2002, 41, 3707–3709.CrossRef Shin, S.-H.; Luchian, T.; Cheley, S.; Braha, O.; Bayley, H. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 2002, 41, 3707–3709.CrossRef
12.
Zurück zum Zitat Kang, X. F.; Cheley, S.; Guan, X.; Bayley, H. Stochastic Detection of Enantiomers. J. Am. Chem. Soc. 2006, 128, 10684–10685.CrossRef Kang, X. F.; Cheley, S.; Guan, X.; Bayley, H. Stochastic Detection of Enantiomers. J. Am. Chem. Soc. 2006, 128, 10684–10685.CrossRef
13.
Zurück zum Zitat Guan, X.; Gu, L. Q.; Cheley, S.; Braha, O.; Bayley, H. Stochastic sensing of TNT with a genetically engineered pore. ChemBioChem, 2005, 6, 1875–1881.CrossRef Guan, X.; Gu, L. Q.; Cheley, S.; Braha, O.; Bayley, H. Stochastic sensing of TNT with a genetically engineered pore. ChemBioChem, 2005, 6, 1875–1881.CrossRef
14.
Zurück zum Zitat Jayawardhana, D. A.; Crank, J. A.; Zhao, Q.; Armstrong, D. W.; Guan X. Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte. Anal. Chem. 2009, 81, 460–464.CrossRef Jayawardhana, D. A.; Crank, J. A.; Zhao, Q.; Armstrong, D. W.; Guan X. Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte. Anal. Chem. 2009, 81, 460–464.CrossRef
15.
Zurück zum Zitat Wang, D.; Zhao, Q.; Guan, X. Detection of nerve agent hydrolytes in an engineered nanopore. Sens. Actuators B Chem. 2009, 139, 440–446.CrossRef Wang, D.; Zhao, Q.; Guan, X. Detection of nerve agent hydrolytes in an engineered nanopore. Sens. Actuators B Chem. 2009, 139, 440–446.CrossRef
16.
Zurück zum Zitat Wu, H. C.; Bayley, H. Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J. Am. Chem. Soc. 2008, 130, 6813–6819.CrossRef Wu, H. C.; Bayley, H. Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J. Am. Chem. Soc. 2008, 130, 6813–6819.CrossRef
17.
Zurück zum Zitat Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770–13773. Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770–13773.
18.
Zurück zum Zitat Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. U.S.A. 2000,97, 1079–1084.CrossRef Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. U.S.A. 2000,97, 10791084.CrossRef
19.
Zurück zum Zitat Howorka, S.; Cheley, S.; Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol. 2001, 19, 636–639.CrossRef Howorka, S.; Cheley, S.; Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol. 2001, 19, 636–639.CrossRef
20.
Zurück zum Zitat Sanchez-Quesada, J.; Saghatelian, A.; Cheley, S.; Bayley, H.; Ghadiri, M. R. Single DNA rotaxanes of a transmembrane pore protein. Angew. Chem. Int. Ed. Engl. 2004, 43, 3063–3067.CrossRef Sanchez-Quesada, J.; Saghatelian, A.; Cheley, S.; Bayley, H.; Ghadiri, M. R. Single DNA rotaxanes of a transmembrane pore protein. Angew. Chem. Int. Ed. Engl. 2004, 43, 3063–3067.CrossRef
21.
Zurück zum Zitat Maglia, G.; Henricus, M.; Wyss, R.; Li, Q.; Cheley, S.; Bayley, H. DNA strands from denatured duplexes are translocated through engineered protein nanopores at alkaline pH. Nano Lett. 2009, 9, 3831–3836.CrossRef Maglia, G.; Henricus, M.; Wyss, R.; Li, Q.; Cheley, S.; Bayley, H. DNA strands from denatured duplexes are translocated through engineered protein nanopores at alkaline pH. Nano Lett. 2009, 9, 3831–3836.CrossRef
22.
Zurück zum Zitat Stoddart, D.; Heron, A. J.; Mikhailova, E.; Maglia, G.; Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7702–7707.CrossRef Stoddart, D.; Heron, A. J.; Mikhailova, E.; Maglia, G.; Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7702–7707.CrossRef
23.
Zurück zum Zitat Clarke, J.; Wu, H. C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 2009, 4, 265–270.CrossRef Clarke, J.; Wu, H. C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 2009, 4, 265–270.CrossRef
24.
Zurück zum Zitat Maglia, G.; Restrepo, M. R.; Mikhailova, E.; Bayley, H. Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 19720–19725.CrossRef Maglia, G.; Restrepo, M. R.; Mikhailova, E.; Bayley, H. Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 19720–19725.CrossRef
25.
Zurück zum Zitat Stefureac, R.; Long, Y. T.; Kraatz, H. B.; Howard, P.; Lee, J. S. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores. Biochem. 2006, 45, 9172–9179.CrossRef Stefureac, R.; Long, Y. T.; Kraatz, H. B.; Howard, P.; Lee, J. S. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores. Biochem. 2006, 45, 9172–9179.CrossRef
26.
Zurück zum Zitat Movileanu, L.; Schmittschmitt, J. P.; Scholtz, J. M.; Bayley, H. Interactions of peptides with a protein pore. Biophys. J. 2005, 89, 1030–1045.CrossRef Movileanu, L.; Schmittschmitt, J. P.; Scholtz, J. M.; Bayley, H. Interactions of peptides with a protein pore. Biophys. J. 2005, 89, 1030–1045.CrossRef
27.
Zurück zum Zitat Wolfe, A. J.; Mohammad, M. M.; Cheley, S.; Bayley, H.; Movileanu, L. Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 2007, 129, 14034–14041.CrossRef Wolfe, A. J.; Mohammad, M. M.; Cheley, S.; Bayley, H.; Movileanu, L. Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 2007, 129, 14034–14041.CrossRef
28.
Zurück zum Zitat Mohammad, M. M.; Movileanu, L. Excursion of a single polypeptide into a protein pore: simple physics, but complicated biology. Eur. Biophys. J. 2008, 37, 913–925.CrossRef Mohammad, M. M.; Movileanu, L. Excursion of a single polypeptide into a protein pore: simple physics, but complicated biology. Eur. Biophys. J. 2008, 37, 913–925.CrossRef
29.
Zurück zum Zitat Movileanu, L.; Howorka, S.; Braha, O.; Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 2000, 18, 1091–1095.CrossRef Movileanu, L.; Howorka, S.; Braha, O.; Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 2000, 18, 1091–1095.CrossRef
30.
Zurück zum Zitat Howorka, S; Nam, J.; Bayley, H.; Kahne, D. Stochastic detection of monovalent and bivalent protein-ligand interactions. Angew. Chem. Int. Ed. Engl. 2004, 43, 842–846. Howorka, S; Nam, J.; Bayley, H.; Kahne, D. Stochastic detection of monovalent and bivalent protein-ligand interactions. Angew. Chem. Int. Ed. Engl. 2004, 43, 842–846.
31.
Zurück zum Zitat Xie, H.; Braha, O.; Gu, L.-Q.; Cheley, S.; Bayley, H. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. Chem. Biol. 2005, 12, 109–120.CrossRef Xie, H.; Braha, O.; Gu, L.-Q.; Cheley, S.; Bayley, H. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. Chem. Biol. 2005, 12, 109–120.CrossRef
32.
Zurück zum Zitat Cheley, S.; Xie, H.; Bayley, H. A genetically encoded pore for the stochastic detection of a protein kinase. Chembiochem 2006, 7, 1923–1927.CrossRef Cheley, S.; Xie, H.; Bayley, H. A genetically encoded pore for the stochastic detection of a protein kinase. Chembiochem 2006, 7, 1923–1927.CrossRef
33.
Zurück zum Zitat Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M. J.; Golovchenko, J. A. Ion-beam sculpting at nanometre length scales. Nature 2001, 412, 166–169.CrossRef Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M. J.; Golovchenko, J. A. Ion-beam sculpting at nanometre length scales. Nature 2001, 412, 166–169.CrossRef
34.
Zurück zum Zitat Storm, A. J.; Storm, C.; Chen, J.; Zandbergen, H.; Joanny, J. F.; Dekker, C. Fast DNA translocation through a solid-state nanopore. Nano Lett. 2005, 5, 1193–1197.CrossRef Storm, A. J.; Storm, C.; Chen, J.; Zandbergen, H.; Joanny, J. F.; Dekker, C. Fast DNA translocation through a solid-state nanopore. Nano Lett. 2005, 5, 1193–1197.CrossRef
35.
Zurück zum Zitat Storm, A. J.; Chen, J. H.; Ling, X. S.; Zandbergen, H. W.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater. 2003, 2, 537–540.CrossRef Storm, A. J.; Chen, J. H.; Ling, X. S.; Zandbergen, H. W.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater. 2003, 2, 537–540.CrossRef
36.
Zurück zum Zitat Heins, E. A.; Siwy, Z. S.; Baker, L. A.; Martin, C. R. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett. 2005, 5, 1824–1829.CrossRef Heins, E. A.; Siwy, Z. S.; Baker, L. A.; Martin, C. R. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett. 2005, 5, 1824–1829.CrossRef
37.
Zurück zum Zitat Siwy, Z.; Apel, P.; Dobrev, D.; Neumann, R.; Spohr, R.; Trautmann, C.; Voss, K. Ion transport through asymmetric nanopores prepared by ion track etching. Nucl. Instrum. Methods Phys. Res., Sect. B 2003,208, 143–148. Siwy, Z.; Apel, P.; Dobrev, D.; Neumann, R.; Spohr, R.; Trautmann, C.; Voss, K. Ion transport through asymmetric nanopores prepared by ion track etching. Nucl. Instrum. Methods Phys. Res., Sect. B 2003,208, 143148.
38.
Zurück zum Zitat Iqbal, S. M.; Akin, D.; Bashir, R. Solid-state nanopore channels with DNA selectivity. Nature Nanotechnol. 2007, 2, 243–248.CrossRef Iqbal, S. M.; Akin, D.; Bashir, R. Solid-state nanopore channels with DNA selectivity. Nature Nanotechnol. 2007, 2, 243–248.CrossRef
39.
Zurück zum Zitat Wanunu, M.; Meller, A. Chemically modified solid-state nanopores. Nano Lett. 2007, 7, 1580–1585. Wanunu, M.; Meller, A. Chemically modified solid-state nanopores. Nano Lett. 2007, 7, 1580–1585.
40.
Zurück zum Zitat Vlassiouk, I.; Kozel, T. R.; Siwy, Z. S. Biosensing with nanofluidic diodes. J. Am. Chem. Soc. 2009, 131, 8211–8220.CrossRef Vlassiouk, I.; Kozel, T. R.; Siwy, Z. S. Biosensing with nanofluidic diodes. J. Am. Chem. Soc. 2009, 131, 8211–8220.CrossRef
41.
Zurück zum Zitat Sun, L.; Crooks, R. M. Single Carbon Nanotube Membranes: A well-defined model for studying mass transport through nanoporous materials. J. Am. Chem. Soc. 2000, 122, 12340–12345.CrossRef Sun, L.; Crooks, R. M. Single Carbon Nanotube Membranes: A well-defined model for studying mass transport through nanoporous materials. J. Am. Chem. Soc. 2000, 122, 12340–12345.CrossRef
42.
Zurück zum Zitat Yeh, I. C.; Hummer, G. Nucleic acid transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12177–12182.CrossRef Yeh, I. C.; Hummer, G. Nucleic acid transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12177–12182.CrossRef
43.
Zurück zum Zitat Nardin, C.; Meier, W. Hybrid materials from amphiphilic block copolymers and membrane proteins. J. Biotechnol. 2002, 90, 17–26. Nardin, C.; Meier, W. Hybrid materials from amphiphilic block copolymers and membrane proteins. J. Biotechnol. 2002, 90, 17–26.
44.
Zurück zum Zitat Bayley, H.; Martin, C. R. Resistive-pulse sensing-from microbes to molecules. Chem. Rev. 2000, 100, 2575–2594.CrossRef Bayley, H.; Martin, C. R. Resistive-pulse sensing-from microbes to molecules. Chem. Rev. 2000, 100, 2575–2594.CrossRef
45.
Zurück zum Zitat Kang, X. F.; Cheley, S.; Rice-Ficht, A. C.; Bayley, H. A storable encapsulated bilayer chip containing a single protein nanopore. J. Am. Chem. Soc. 2007, 129, 4701–4705.CrossRef Kang, X. F.; Cheley, S.; Rice-Ficht, A. C.; Bayley, H. A storable encapsulated bilayer chip containing a single protein nanopore. J. Am. Chem. Soc. 2007, 129, 4701–4705.CrossRef
46.
Zurück zum Zitat White, R. J.; Ervin, E. N.; Yang, T.; Chen, X.; Daniel, S.; Cremer, P. S.; White, H. S. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc. 2007, 129, 11766–11775.CrossRef White, R. J.; Ervin, E. N.; Yang, T.; Chen, X.; Daniel, S.; Cremer, P. S.; White, H. S. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc. 2007, 129, 11766–11775.CrossRef
47.
Zurück zum Zitat Zhao, Q.; Wang, D.; Jayawardhana, D. A.; Guan, X. Stochastic sensing of biomolecules in a nanopore sensor array. Nanotechnology 2008, 19, 505504.CrossRef Zhao, Q.; Wang, D.; Jayawardhana, D. A.; Guan, X. Stochastic sensing of biomolecules in a nanopore sensor array. Nanotechnology 2008, 19, 505504.CrossRef
48.
Zurück zum Zitat Howorka, S.; Siwy Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360–2384.CrossRef Howorka, S.; Siwy Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360–2384.CrossRef
49.
Zurück zum Zitat Montal, M.; Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 1972, 69, 3561–3566.CrossRef Montal, M.; Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 1972, 69, 3561–3566.CrossRef
50.
Zurück zum Zitat Matsuno, Y.; Osono, C.; Hirano, A.; Sugawara, M. Single-channel recordings of gramicidin at agarose-supported bilayer lipid membranes formed by the tip-dip and painting methods. Anal. Sci. 2004, 20, 1217–1221.CrossRef Matsuno, Y.; Osono, C.; Hirano, A.; Sugawara, M. Single-channel recordings of gramicidin at agarose-supported bilayer lipid membranes formed by the tip-dip and painting methods. Anal. Sci. 2004, 20, 1217–1221.CrossRef
51.
Zurück zum Zitat Gu, L. Q.; Cheley, S.; Bayley, H. Prolonged residence time of a noncovalent molecular adapter, beta-cyclodextrin, within the lumen of mutant alpha-hemolysin pores. J. Gen. Physiol. 2001, 118, 481–494.CrossRef Gu, L. Q.; Cheley, S.; Bayley, H. Prolonged residence time of a noncovalent molecular adapter, beta-cyclodextrin, within the lumen of mutant alpha-hemolysin pores. J. Gen. Physiol. 2001, 118, 481–494.CrossRef
52.
Zurück zum Zitat Pinnaduwage, L. A.; Gehl, A.; Hedden, D. L.; Muralidharan, G.; Thundat, T.; Lareau, R. T.; Sulchek, T.; Manning, L.; Rogers, B.; Jones, M.; Adams, J. D. Explosives: a microsensor for trinitrotoluene vapour. Nature 2003, 425, 474–474.CrossRef Pinnaduwage, L. A.; Gehl, A.; Hedden, D. L.; Muralidharan, G.; Thundat, T.; Lareau, R. T.; Sulchek, T.; Manning, L.; Rogers, B.; Jones, M.; Adams, J. D. Explosives: a microsensor for trinitrotoluene vapour. Nature 2003, 425, 474–474.CrossRef
53.
Zurück zum Zitat Looger, L. L.; Dwyer, M. A.; Smith, J. J.; Hellinga, H. W. Computational design of receptor and sensor proteins with novel functions. Nature 2003, 423, 185–190.CrossRef Looger, L. L.; Dwyer, M. A.; Smith, J. J.; Hellinga, H. W. Computational design of receptor and sensor proteins with novel functions. Nature 2003, 423, 185–190.CrossRef
54.
Zurück zum Zitat Meagher, R. B. Pink water, green plants, and pink elephants. Nat. Biotechnol. 2001, 19, 1120–1121.CrossRef Meagher, R. B. Pink water, green plants, and pink elephants. Nat. Biotechnol. 2001, 19, 1120–1121.CrossRef
57.
Zurück zum Zitat Hooijschuur, E. W.; Kientz, C. E.; Brinkman, U. A.Analytical separation techniques for the determination of chemical warfare agents. J. Chromatogr. A 2002, 982, 177–200.CrossRef Hooijschuur, E. W.; Kientz, C. E.; Brinkman, U. A.Analytical separation techniques for the determination of chemical warfare agents. J. Chromatogr. A 2002, 982, 177–200.CrossRef
58.
Zurück zum Zitat Rathert, P.; Dhayalan, A.; Murakami, M.; Zhang, X.; Tamas, R.; Jurkowska, R.; Komatsu, Y.; Shinkai, Y.; Cheng, X. D.; Jeltsch, A. Protein lysine methyltransferase G9a acts on non-histone targets. Nat. Chem. Biol. 2008, 4, 344–346.CrossRef Rathert, P.; Dhayalan, A.; Murakami, M.; Zhang, X.; Tamas, R.; Jurkowska, R.; Komatsu, Y.; Shinkai, Y.; Cheng, X. D.; Jeltsch, A. Protein lysine methyltransferase G9a acts on non-histone targets. Nat. Chem. Biol. 2008, 4, 344–346.CrossRef
59.
Zurück zum Zitat Asara, J. M.; Schweitzer, M. H.; Freimark, L. M.; Phillips, M.; Cantley, L. C. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 2007, 316, 280–285.CrossRef Asara, J. M.; Schweitzer, M. H.; Freimark, L. M.; Phillips, M.; Cantley, L. C. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 2007, 316, 280–285.CrossRef
60.
Zurück zum Zitat Baker, D.; Sali, A. Protein structure prediction and structural genomics. Science 2001, 294, 93–96.CrossRef Baker, D.; Sali, A. Protein structure prediction and structural genomics. Science 2001, 294, 93–96.CrossRef
61.
Zurück zum Zitat Zhao, Q.; de Zoysa, R. S.; Wang, D.; Jayawardhana, D. A.; Guan, X. Real-time monitoring of peptide cleavage using a nanopore probe. J. Am. Chem. Soc. 2009, 131, 6324–6325.CrossRef Zhao, Q.; de Zoysa, R. S.; Wang, D.; Jayawardhana, D. A.; Guan, X. Real-time monitoring of peptide cleavage using a nanopore probe. J. Am. Chem. Soc. 2009, 131, 6324–6325.CrossRef
63.
Zurück zum Zitat Bayley, H. Sequencing single molecules of DNA. Curr. Opin. Chem. Biol. 2006, 10, 628–637.CrossRef Bayley, H. Sequencing single molecules of DNA. Curr. Opin. Chem. Biol. 2006, 10, 628–637.CrossRef
64.
Zurück zum Zitat Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; Jovanovich, S. B.; Krstic, P. S.; Lindsay, S.; Ling, X. S.; Mastrangelo, C. H.; Meller, A.; Oliver, J. S.; Pershin, Y. V.; Ramsey, J. M.; Riehn, R.; Soni, G. V.; Tabard-Cossa, V.; Wanunu, M.; Wiggin, M.; Schloss, J. The potential and challenges of nanopore sequencing. A. Nat. Biotechnol. 2008, 26, 1146–1153.CrossRef Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; Jovanovich, S. B.; Krstic, P. S.; Lindsay, S.; Ling, X. S.; Mastrangelo, C. H.; Meller, A.; Oliver, J. S.; Pershin, Y. V.; Ramsey, J. M.; Riehn, R.; Soni, G. V.; Tabard-Cossa, V.; Wanunu, M.; Wiggin, M.; Schloss, J. The potential and challenges of nanopore sequencing. A. Nat. Biotechnol. 2008, 26, 1146–1153.CrossRef
65.
Zurück zum Zitat Purnell, F. R.; Mehta, K. K.; Schmidt, J. J. Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore. Nano Lett. 2008, 8, 3029–3034.CrossRef Purnell, F. R.; Mehta, K. K.; Schmidt, J. J. Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore. Nano Lett. 2008, 8, 3029–3034.CrossRef
66.
Zurück zum Zitat Astier, Y.; Braha, O.; Bayley, H. Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5'-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 2006, 128, 1705–1710.CrossRef Astier, Y.; Braha, O.; Bayley, H. Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5'-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 2006, 128, 1705–1710.CrossRef
67.
Zurück zum Zitat Meller, A.; Branton, D. Single molecule measurements of DNA transport through a nanopore. Electrophoresis 2002, 23, 2583–2591.CrossRef Meller, A.; Branton, D. Single molecule measurements of DNA transport through a nanopore. Electrophoresis 2002, 23, 2583–2591.CrossRef
68.
Zurück zum Zitat Meller, A.; Nivon, L.; Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 2001, 86, 3435–3438.CrossRef Meller, A.; Nivon, L.; Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 2001, 86, 3435–3438.CrossRef
69.
Zurück zum Zitat Sigalov, G.; Comer, J.; Timp, G.; Aksimentiev, A. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 2008, 8, 56–63.CrossRef Sigalov, G.; Comer, J.; Timp, G.; Aksimentiev, A. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 2008, 8, 56–63.CrossRef
70.
Zurück zum Zitat de Zoysa, R. S.; Jayawardhana, D. A.; Zhao, Q.; Wang, D.; Armstrong, D. W.; Guan, X. Slowing DNA translocation through nanopores using a solution containing organic salts. J. Phys. Chem. B 2009, 113, 13332–13336.CrossRef de Zoysa, R. S.; Jayawardhana, D. A.; Zhao, Q.; Wang, D.; Armstrong, D. W.; Guan, X. Slowing DNA translocation through nanopores using a solution containing organic salts. J. Phys. Chem. B 2009, 113, 13332–13336.CrossRef
71.
Zurück zum Zitat Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R. Current trends in 'artificial-nose' technology. Trends Biotechnol. 1998, 16, 250–258.CrossRef Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R. Current trends in 'artificial-nose' technology. Trends Biotechnol. 1998, 16, 250258.CrossRef
72.
Zurück zum Zitat Turner, A. P.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2004, 2, 161–166.CrossRef Turner, A. P.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2004, 2, 161–166.CrossRef
73.
Zurück zum Zitat Thaler, E. R.; Kennedy, D. W.; Hanson, C. W. Medical applications of electronic nose technology: review of current status. Am. J. Rhinol. 2001, 15, 291–295. Thaler, E. R.; Kennedy, D. W.; Hanson, C. W. Medical applications of electronic nose technology: review of current status. Am. J. Rhinol. 2001, 15, 291–295.
Metadaten
Titel
Stochastic Detection of Terrorist Agents and Biomolecules in a Biological Channel
verfasst von
Xiyun Guan
Ranulu Samanthi S. de Zoysa
Dilani A. Jayawardhana
Qitao Zhao
Copyright-Jahr
2011
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-8252-0_13

Neuer Inhalt