Skip to main content

2013 | OriginalPaper | Buchkapitel

2. Stochastic Modelling in Life Sciences

verfasst von : Christiane Fuchs

Erschienen in: Inference for Diffusion Processes

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Key mechanisms in life sciences can often be assessed by application of mathematical models. Moreover, real-world phenomena can particularly be captured when such a model allows for random events. This chapter motivates and reviews representative application fields from life sciences and appropriate mathematical models: for the spread of infectious diseases and for processes in molecular biology, biochemistry and genetics. These applications and models recur throughout the entire book. The chapter describes the dynamical evolution of the considered systems in terms of three established types of processes: stochastic jump processes, deterministic state-continuous processes and stochastic diffusion processes. Simulation of such models is explained, and the important role of randomness is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbey H (1952) An examination of the Reed-Frost theory of epidemics. Hum Biol 24:201–233 Abbey H (1952) An examination of the Reed-Frost theory of epidemics. Hum Biol 24:201–233
Zurück zum Zitat Allen L (2003) An introduction to stochastic processes with applications to biology. Pearson Prentice Hall, Upper Saddle RiverMATH Allen L (2003) An introduction to stochastic processes with applications to biology. Pearson Prentice Hall, Upper Saddle RiverMATH
Zurück zum Zitat Alon U (2007) An Introduction to systems biology. Design principles of biological circuits. Chapman and Hall, Boca Raton Alon U (2007) An Introduction to systems biology. Design principles of biological circuits. Chapman and Hall, Boca Raton
Zurück zum Zitat Anderson R (1982) The population dynamics of infectious diseases. Chapman and Hall, LondonCrossRef Anderson R (1982) The population dynamics of infectious diseases. Chapman and Hall, LondonCrossRef
Zurück zum Zitat Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. Lecture Notes in Statistics, vol 151. Springer, New YorkCrossRef Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. Lecture Notes in Statistics, vol 151. Springer, New YorkCrossRef
Zurück zum Zitat Anderson R, May R (1985) Vaccination and herd immunity to infectious diseases. Nature 318:323–329CrossRef Anderson R, May R (1985) Vaccination and herd immunity to infectious diseases. Nature 318:323–329CrossRef
Zurück zum Zitat Anderson R, May R (1991) Infectious diseases of humans. Oxford University Press, Oxford Anderson R, May R (1991) Infectious diseases of humans. Oxford University Press, Oxford
Zurück zum Zitat Arkin A, Ross J, McAdams H (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149:1633–1648 Arkin A, Ross J, McAdams H (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149:1633–1648
Zurück zum Zitat Arnaut L, Formosinho S, Burrows H (2007) Chemical kinetics: from molecular structure to chemical reactivity. Elsevier, Amsterdam/Oxford Arnaut L, Formosinho S, Burrows H (2007) Chemical kinetics: from molecular structure to chemical reactivity. Elsevier, Amsterdam/Oxford
Zurück zum Zitat Bahcall O (2005) Single cell resolution in regulation of gene expression. Mol Syst Biol 1 (article number 2005.0015) Bahcall O (2005) Single cell resolution in regulation of gene expression. Mol Syst Biol 1 (article number 2005.0015)
Zurück zum Zitat Bailey N (1975) The mathematical theory of infectious diseases, 2nd edn. Charles Griffin, LondonMATH Bailey N (1975) The mathematical theory of infectious diseases, 2nd edn. Charles Griffin, LondonMATH
Zurück zum Zitat Ball F (1986) A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv in Appl Probab 18:289–310MathSciNetCrossRefMATH Ball F (1986) A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv in Appl Probab 18:289–310MathSciNetCrossRefMATH
Zurück zum Zitat Becker N (1989) Analysis of infectious disease data. Monographs on statistics and applied probability. Chapman and Hall, London Becker N (1989) Analysis of infectious disease data. Monographs on statistics and applied probability. Chapman and Hall, London
Zurück zum Zitat Boys R, Wilkinson D, Kirkwood T (2008) Bayesian inference for a discretely observed stochastic kinetic model. Stat Comput 18:125–135MathSciNetCrossRef Boys R, Wilkinson D, Kirkwood T (2008) Bayesian inference for a discretely observed stochastic kinetic model. Stat Comput 18:125–135MathSciNetCrossRef
Zurück zum Zitat Brauer F (2009) Mathematical epidemiology is not an oxymoron. BMC Public Health 9:S2CrossRef Brauer F (2009) Mathematical epidemiology is not an oxymoron. BMC Public Health 9:S2CrossRef
Zurück zum Zitat Costa Maia J (1952) Some mathematical developments on the epidemic theory formulated by Reed and Frost. Hum Biol 24:167–200 Costa Maia J (1952) Some mathematical developments on the epidemic theory formulated by Reed and Frost. Hum Biol 24:167–200
Zurück zum Zitat Cunha B (2004) Historical aspects of infectious diseases, part I. Infect Dis Clin N Am 18(1):xi–xv Cunha B (2004) Historical aspects of infectious diseases, part I. Infect Dis Clin N Am 18(1):xi–xv
Zurück zum Zitat Daley D, Gani J (1999) Epidemic modelling: an introduction. Cambridge studies in mathematical biology, vol 15. Cambridge University Press, Cambridge Daley D, Gani J (1999) Epidemic modelling: an introduction. Cambridge studies in mathematical biology, vol 15. Cambridge University Press, Cambridge
Zurück zum Zitat Demin O, Plyusnina T, Lebedeva G, Zobova E, Metelkin E, Kolupaev A, Goryanin I, Tobin F (2005) Kinetic modelling of the E. coli metabolism. In: Alberghina L, Westerhoff H (eds) Systems biology. Definitions and perspectives. Springer, Berlin/Heidelberg, pp 31–67CrossRef Demin O, Plyusnina T, Lebedeva G, Zobova E, Metelkin E, Kolupaev A, Goryanin I, Tobin F (2005) Kinetic modelling of the E. coli metabolism. In: Alberghina L, Westerhoff H (eds) Systems biology. Definitions and perspectives. Springer, Berlin/Heidelberg, pp 31–67CrossRef
Zurück zum Zitat Diekmann O, Heesterbeek J (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, Chichester Diekmann O, Heesterbeek J (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, Chichester
Zurück zum Zitat Dobson A, Carper E (1996) Infectious diseases and human population history. Bioscience 46:115–126CrossRef Dobson A, Carper E (1996) Infectious diseases and human population history. Bioscience 46:115–126CrossRef
Zurück zum Zitat Ehrenberg M, Elf J, Aurell E, Sandberg R, Tegnér J (2003) Systems biology is taking off. Genome Res 13:2377–2380CrossRef Ehrenberg M, Elf J, Aurell E, Sandberg R, Tegnér J (2003) Systems biology is taking off. Genome Res 13:2377–2380CrossRef
Zurück zum Zitat En’ko P (1889) On the course of epidemics of some infectious diseases. Vrach St Petersburg 10:1008–1010, 1039–1042, 1061–1063 En’ko P (1889) On the course of epidemics of some infectious diseases. Vrach St Petersburg 10:1008–1010, 1039–1042, 1061–1063
Zurück zum Zitat Fine P (1993) Herd immunity: history, theory, practice. Epidemiol Rev 15:265–302 Fine P (1993) Herd immunity: history, theory, practice. Epidemiol Rev 15:265–302
Zurück zum Zitat Galvani A, May R (2005) Dimensions of superspreading. Nature 438:293–295CrossRef Galvani A, May R (2005) Dimensions of superspreading. Nature 438:293–295CrossRef
Zurück zum Zitat Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889CrossRef Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889CrossRef
Zurück zum Zitat Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434MathSciNetCrossRef Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434MathSciNetCrossRef
Zurück zum Zitat Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361CrossRef Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361CrossRef
Zurück zum Zitat Gillespie D (1992) A rigorous derivation of the chemical master equation. Phys A 188:404–425CrossRef Gillespie D (1992) A rigorous derivation of the chemical master equation. Phys A 188:404–425CrossRef
Zurück zum Zitat Gillespie D (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55CrossRef Gillespie D (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55CrossRef
Zurück zum Zitat Goel N, Richter-Dyn N (1974) Stochastic models in biology. Academic, New York Goel N, Richter-Dyn N (1974) Stochastic models in biology. Academic, New York
Zurück zum Zitat Greenwood M (1931) On the statistical measure of infectiousness. J Hyg 31:336–351CrossRef Greenwood M (1931) On the statistical measure of infectiousness. J Hyg 31:336–351CrossRef
Zurück zum Zitat Hamer W (1906) The Milroy lectures on epidemic disease in England – the evidence of variability and of persistency of type (Lecture I). Lancet 167:569–574CrossRef Hamer W (1906) The Milroy lectures on epidemic disease in England – the evidence of variability and of persistency of type (Lecture I). Lancet 167:569–574CrossRef
Zurück zum Zitat Hethcote H (1994) A thousand and one epidemic models. In: Levin S (ed) Frontiers in mathematical biology, Lecture notes in biomathematics. Springer, Berlin, pp 504–515CrossRef Hethcote H (1994) A thousand and one epidemic models. In: Levin S (ed) Frontiers in mathematical biology, Lecture notes in biomathematics. Springer, Berlin, pp 504–515CrossRef
Zurück zum Zitat Isham V (2004) Stochastic models for epidemics. Research Report No 263, Department of Statistical Science, University College London Isham V (2004) Stochastic models for epidemics. Research Report No 263, Department of Statistical Science, University College London
Zurück zum Zitat Jacquez J (1972) Compartmental analysis in biology and medicine. Elsevier, Amsterdam Jacquez J (1972) Compartmental analysis in biology and medicine. Elsevier, Amsterdam
Zurück zum Zitat Keeling M, Rohani P (2008) Modeling infectious disease in humans and animals. Princeton University Press, Princeton Keeling M, Rohani P (2008) Modeling infectious disease in humans and animals. Princeton University Press, Princeton
Zurück zum Zitat Keener J, Sneyd J (1989) Mathematical physiology. Springer, New York Keener J, Sneyd J (1989) Mathematical physiology. Springer, New York
Zurück zum Zitat Kelly H, Peck H, Laurie K, Wu P, Nishiura H, Cowling B (2011) The age-specific cumulative incidence of infection with pandemic influenza H1N1 2009 was similar in various countries prior to vaccination. PLoS ONE 6:e21 828 Kelly H, Peck H, Laurie K, Wu P, Nishiura H, Cowling B (2011) The age-specific cumulative incidence of infection with pandemic influenza H1N1 2009 was similar in various countries prior to vaccination. PLoS ONE 6:e21 828
Zurück zum Zitat Kermack W, McKendrick A (1927) A contribution to the mathematical theory of epidemics. Proc R Soc London Ser A 115:700–721CrossRefMATH Kermack W, McKendrick A (1927) A contribution to the mathematical theory of epidemics. Proc R Soc London Ser A 115:700–721CrossRefMATH
Zurück zum Zitat Laidler K (1993) The world of physical chemistry. Oxford University Press, New York Laidler K (1993) The world of physical chemistry. Oxford University Press, New York
Zurück zum Zitat Lande R, Engen S, Sæther B (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, New YorkCrossRef Lande R, Engen S, Sæther B (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, New YorkCrossRef
Zurück zum Zitat Le Novère N, Shimizu T (2001) StochSim: modelling of stochastic biomolecular processes. Bioinformatics 17:575–576CrossRef Le Novère N, Shimizu T (2001) StochSim: modelling of stochastic biomolecular processes. Bioinformatics 17:575–576CrossRef
Zurück zum Zitat Lloyd-Smith J, Schreiber S, Kopp P, Getz W (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438:355–359CrossRef Lloyd-Smith J, Schreiber S, Kopp P, Getz W (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438:355–359CrossRef
Zurück zum Zitat Manninen T, Linne ML, Ruohonena K (2006) Developing Itô stochastic differential equation models for neuronal signal transduction pathways. Comput Biol Chem 30:280–291CrossRefMATH Manninen T, Linne ML, Ruohonena K (2006) Developing Itô stochastic differential equation models for neuronal signal transduction pathways. Comput Biol Chem 30:280–291CrossRefMATH
Zurück zum Zitat McKendrick A (1926) Application of mathematics to medical problems. Proc Edinb Math Soc 44:98–130CrossRef McKendrick A (1926) Application of mathematics to medical problems. Proc Edinb Math Soc 44:98–130CrossRef
Zurück zum Zitat McNeill W (1976) Plagues and people. Anchor, New York McNeill W (1976) Plagues and people. Anchor, New York
Zurück zum Zitat Oldstone M (2010) Viruses, plagues, and history: past, present and future. Oxford University Press, Oxford/New York Oldstone M (2010) Viruses, plagues, and history: past, present and future. Oxford University Press, Oxford/New York
Zurück zum Zitat Rao C, Wolf D, Arkin A (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237CrossRef Rao C, Wolf D, Arkin A (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237CrossRef
Zurück zum Zitat Renshaw E (1991) Modelling biological populations in space and time. Cambridge University Press, CambridgeCrossRefMATH Renshaw E (1991) Modelling biological populations in space and time. Cambridge University Press, CambridgeCrossRefMATH
Zurück zum Zitat Riley S (2007) Large-scale spatial-transmission models of infectious disease. Science 316:1298–1301CrossRef Riley S (2007) Large-scale spatial-transmission models of infectious disease. Science 316:1298–1301CrossRef
Zurück zum Zitat Ross R (1915) Some a priori pathometric equations. Br Med J 1:546–547CrossRef Ross R (1915) Some a priori pathometric equations. Br Med J 1:546–547CrossRef
Zurück zum Zitat Rushton S, Mautner A (1955) The deterministic model of a simple epidemic for more than one community. Biometrika 42:126–132MathSciNetMATH Rushton S, Mautner A (1955) The deterministic model of a simple epidemic for more than one community. Biometrika 42:126–132MathSciNetMATH
Zurück zum Zitat Sattenspiel L (1987) Population structure and the spread of disease. Hum Biol 59:411–438 Sattenspiel L (1987) Population structure and the spread of disease. Hum Biol 59:411–438
Zurück zum Zitat Sattenspiel L, Dietz K (1995) A structured epidemic model incorporating geographic mobility among regions. Math Biosci 128:71–91CrossRefMATH Sattenspiel L, Dietz K (1995) A structured epidemic model incorporating geographic mobility among regions. Math Biosci 128:71–91CrossRefMATH
Zurück zum Zitat Sherman I (2006) The power of plagues. ASM Press, Washington, DC Sherman I (2006) The power of plagues. ASM Press, Washington, DC
Zurück zum Zitat Smallman-Raynor M, Cliff A (2004) Impact of infectious diseases on war. Infect Dis Clin N Am 18:341–368CrossRef Smallman-Raynor M, Cliff A (2004) Impact of infectious diseases on war. Infect Dis Clin N Am 18:341–368CrossRef
Zurück zum Zitat Sveiczer A, Tyson J, Novak B (2001) A stochastic, molecular model of the fission yeast cell cycle: role of the nucleocytoplasmic ratio in cycle time regulation. Biophys Chem 92:1–15CrossRef Sveiczer A, Tyson J, Novak B (2001) A stochastic, molecular model of the fission yeast cell cycle: role of the nucleocytoplasmic ratio in cycle time regulation. Biophys Chem 92:1–15CrossRef
Zurück zum Zitat Tian T, Xu S, Gao J, Burrage K (2007) Simulated maximum likelihood method for estimating kinetic rates in gene expression. Bioinformatics 23:84–91CrossRef Tian T, Xu S, Gao J, Burrage K (2007) Simulated maximum likelihood method for estimating kinetic rates in gene expression. Bioinformatics 23:84–91CrossRef
Zurück zum Zitat Vasold M (2008) Grippe, Pest und Cholera: eine Geschichte der Seuchen in Europa. Franz Steiner Verlag, Stuttgart Vasold M (2008) Grippe, Pest und Cholera: eine Geschichte der Seuchen in Europa. Franz Steiner Verlag, Stuttgart
Zurück zum Zitat Whittle P (1955) The outcome of a stochastic epidemic – a note on Bailey’s paper. Biometrika 42:116–122MathSciNetMATH Whittle P (1955) The outcome of a stochastic epidemic – a note on Bailey’s paper. Biometrika 42:116–122MathSciNetMATH
Zurück zum Zitat Wilkinson D (2006) Stochastic modelling for systems biology. Chapman and Hall, Boca RatonMATH Wilkinson D (2006) Stochastic modelling for systems biology. Chapman and Hall, Boca RatonMATH
Zurück zum Zitat Williams T (1971) An algebraic proof of the threshold theorem for the general stochastic epidemic. Adv Appl Probab 3:223CrossRef Williams T (1971) An algebraic proof of the threshold theorem for the general stochastic epidemic. Adv Appl Probab 3:223CrossRef
Zurück zum Zitat Zheng Q, Ross J (1991) Comparison of deterministic and stochastic kinetics for nonlinear systems. J Chem Phys 94:3644–3648CrossRef Zheng Q, Ross J (1991) Comparison of deterministic and stochastic kinetics for nonlinear systems. J Chem Phys 94:3644–3648CrossRef
Metadaten
Titel
Stochastic Modelling in Life Sciences
verfasst von
Christiane Fuchs
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-25969-2_2