Skip to main content

2021 | OriginalPaper | Buchkapitel

Stochastic Simulation of Clay Brick Masonry Walls with Spatially Variable Material Properties

verfasst von : Dominik Müller, Tilo Proske, Carl-Alexander Graubner

Erschienen in: 18th International Probabilistic Workshop

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the assessment of existing masonry structures, a high variability of material properties can be observed. The variability is also present within a single wall, which raises the question of how this spatial variability influences the load-bearing capacity and the reliability of an assessed masonry wall. With regard to reliability, lower quantile values of the load-bearing capacity are decisive. For this reason, the influence of spatial variability on the probability distribution of the load-bearing capacity has to be known. In this paper, clay brick masonry walls in compression are investigated by Monte Carlo simulations utilising a nonlinear finite element model. For the validation of the finite element model, experimental investigations of the stress redistribution capability of masonry walls with weak spots were carried out. The numerical model follows a simplified micro-modeling approach with unit-to-unit variability of the material properties. Results of the stochastic simulations are shown for varying wall length, slenderness and coefficients of variation of the material properties. The obtained statistical distributions of the load-bearing capacity are evaluated with respect to acceptable design values for ensuring structural reliability. It is shown that spatial variability leads to a reduction of the mean load-bearing capacity, but the overall variability of the load-bearing capacity is much smaller than that of the spatially varying material properties. Compared to an approach assuming homogeneity within the wall, the consideration of spatial variability leads to an increase of suitable design values.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Müller, D., & Graubner, C.-A. (2018). Uncertainties in the assessment of existing masonry structures. In Life cycle analysis and assessment in civil engineering: Towards an integrated vision (pp. 369–376), 28–31 October, Ghent, Belgium. Müller, D., & Graubner, C.-A. (2018). Uncertainties in the assessment of existing masonry structures. In Life cycle analysis and assessment in civil engineering: Towards an integrated vision (pp. 369–376), 28–31 October, Ghent, Belgium.
2.
Zurück zum Zitat Müller, D., & Graubner, C.-A. (2019). Modification of the partial safety factor for compressive strength of existing masonry using a Bayesian method. In 17th International probabilistic workshop (pp. 133–138), 11–13 September, Edinburgh, United Kingdom. Müller, D., & Graubner, C.-A. (2019). Modification of the partial safety factor for compressive strength of existing masonry using a Bayesian method. In 17th International probabilistic workshop (pp. 133–138), 11–13 September, Edinburgh, United Kingdom.
3.
Zurück zum Zitat fib. (2016). Bulletin 80—Partial factor methods for existing concrete structures. Recommendation. Fédération internationale du betón, Lausanne, Switzerland. fib. (2016). Bulletin 80—Partial factor methods for existing concrete structures. Recommendation. Fédération internationale du betón, Lausanne, Switzerland.
4.
Zurück zum Zitat EN 772-1. (2011). Methods of test for masonry units—Part 1: Determination of compressive strength. European Committee for Standardization, Brussels. EN 772-1. (2011). Methods of test for masonry units—Part 1: Determination of compressive strength. European Committee for Standardization, Brussels.
5.
Zurück zum Zitat EN 1015-11. (2019). Methods of test for mortar for masonry—Part 11: Determination of flexural and compressive strength of hardened mortar. European Committee for Standardization, Brussels. EN 1015-11. (2019). Methods of test for mortar for masonry—Part 11: Determination of flexural and compressive strength of hardened mortar. European Committee for Standardization, Brussels.
6.
Zurück zum Zitat EN 1052-1. (1998). Methods of test for masonry—Part 1: Determination of compressive strength. European Committee for Standardization, Brussels. EN 1052-1. (1998). Methods of test for masonry—Part 1: Determination of compressive strength. European Committee for Standardization, Brussels.
7.
Zurück zum Zitat Lourenço, P. J. B. B. (1996). Computational strategies for masonry structures. Dissertation, TU Delft. Lourenço, P. J. B. B. (1996). Computational strategies for masonry structures. Dissertation, TU Delft.
8.
Zurück zum Zitat Schueremans, L. (2001). Probabilistic evaluation of structural unreinforced masonry. Dissertation, KU Leuven. Schueremans, L. (2001). Probabilistic evaluation of structural unreinforced masonry. Dissertation, KU Leuven.
9.
Zurück zum Zitat Brameshuber, W. (2019). Eigenschaften von Mauersteinen, Mauermörtel und Putzen. In Mauerwerk-Kalender 2019 (pp. 3–29). Ernst & Sohn. Brameshuber, W. (2019). Eigenschaften von Mauersteinen, Mauermörtel und Putzen. In Mauerwerk-Kalender 2019 (pp. 3–29). Ernst & Sohn.
10.
Zurück zum Zitat Glock, C. (2004). Traglast unbewehrter Beton- und Mauerwerkswände. Nichtlineares Berechnungsmodell und konsistentes Bemessungskonzept für schlanke Wände unter Druckbeanspruchung. Dissertation, Technische Universität Darmstadt. Glock, C. (2004). Traglast unbewehrter Beton- und Mauerwerkswände. Nichtlineares Berechnungsmodell und konsistentes Bemessungskonzept für schlanke Wände unter Druckbeanspruchung. Dissertation, Technische Universität Darmstadt.
11.
Zurück zum Zitat EN 1992-1-1. (2010). Eurocode 2: Design of concrete structures—Part 1-1: General rules and rules for buildings. European Committee for Standardization, Brussels. EN 1992-1-1. (2010). Eurocode 2: Design of concrete structures—Part 1-1: General rules and rules for buildings. European Committee for Standardization, Brussels.
12.
Zurück zum Zitat EN 1996-1-1. (2013). Eurocode 6: Design of masonry structures—Part 1-1: General rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Brussels. EN 1996-1-1. (2013). Eurocode 6: Design of masonry structures—Part 1-1: General rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Brussels.
13.
Zurück zum Zitat Heffler, L. M., Stewart, M. G., Masia, M. J., & Correa, M. R. S. (2008). Statistical analysis and spatial correlation of flexural bond strength for masonry walls. Masonry International, 21, 59–70. Heffler, L. M., Stewart, M. G., Masia, M. J., & Correa, M. R. S. (2008). Statistical analysis and spatial correlation of flexural bond strength for masonry walls. Masonry International, 21, 59–70.
14.
Zurück zum Zitat Müller, D., Förster, V., & Graubner, C.-A. (2017). Influence of material spatial variability on required safety factors for masonry walls in compression. Mauerwerk—European Journal of Masonry, 21, 209–222.CrossRef Müller, D., Förster, V., & Graubner, C.-A. (2017). Influence of material spatial variability on required safety factors for masonry walls in compression. Mauerwerk—European Journal of Masonry, 21, 209–222.CrossRef
15.
Zurück zum Zitat Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering, 19, 728–739.CrossRef Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering, 19, 728–739.CrossRef
16.
Zurück zum Zitat EN 1990. (2002). Eurocode—Basis of structural design. European Committee for Standardization, Brussels. EN 1990. (2002). Eurocode—Basis of structural design. European Committee for Standardization, Brussels.
Metadaten
Titel
Stochastic Simulation of Clay Brick Masonry Walls with Spatially Variable Material Properties
verfasst von
Dominik Müller
Tilo Proske
Carl-Alexander Graubner
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-73616-3_60