Skip to main content
main-content

Über dieses Buch

Dieses Buch vereinigt Konzepte und Methoden der stochastischen Modellbildung, der statistischen Analyse und der aktuariellen Anwendung in einem Band.Dabei wird eine kompakte, aber dennoch für Theoretiker wie Praktiker gut verständliche und interessante Darstellung der Themengebiete Risikobewertung, explorative Datenanalyse, Simulation, Stochastische Modelle und Prozesse, verallgemeinerte lineare Regression, biometrische Modelle und Credibility gegeben.Zahlreiche Beispiele illustrieren die Anwendung der dargestellten Konzepte in der aktuariellen Praxis, wobei auf Modelle aus der Personenversicherung, Sachversicherungs- und Finanzmathematik eingegangen wird.

Inhaltsverzeichnis

Frontmatter

1. Quantifizierung und Bewertung von Risiken

Zusammenfassung
Geeignete Familien von Wahrscheinlichkeitsverteilungen bilden eine wesentliche Grundlage aller praxisrelevanten stochastischen Modelle und statistischen Analysen. Dies gilt insbesondere im Bereich der Versicherungs- und Finanzmathematik, von der Lebensversicherung (Sterbetafeln und Lebensdauerverteilungen) über die Schadenversicherung (Schadenzahl- und Schadenhöhenverteilungen) bis zur Stochastischen Finanzmathematik (Verteilungen von Aktienkursen, Analyse finanzmathematischer Zeitreihen). In diesem Kapitel werden zunächst die wesentlichen Konzepte zu Zufallsvariablen wiederholt. Vorbereitend für die folgenden Kapitel werden dann die Risikomaße Value at Risk und Expected Shortfall eingeführt und schließlich einige grundlegende Aspekte der Modellierung von Abhängigkeitsstrukturen mit Hilfe von Copulas.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

2. Deskriptive Statistik und explorative Datenanalyse

Zusammenfassung
Die statistische Datenanalyse ist heute eine Kernaufgabe im aktuariellen Umfeld. Die Arbeit mit zum Teil sehr großen Datenmengen und der Einsatz spezieller Software zur Datenanalyse sind im beruflichen Alltag eines Aktuars zu Grundkompetenzen geworden. Mittels deskriptiver und explorativer Verfahren werden Datensätze systematisch untersucht, durch Kennzahlen beschrieben und durch grafische Darstellungen charakterisiert. Die Methoden der deskriptiven Statistik und der explorativen Datenanalyse stehen oft am Beginn von weiterführenden, induktiven Verfahren, wie z. B. der statistischen Modellbildung. Deskriptive und explorative Verfahren der Statistik sind in der Regel der erste Schritt, um einen Datensatz zu beschreiben und inhaltlich kennenzulernen. Diese Methoden werden aber auch unterstützend innerhalb von induktiven statistischen Verfahren verwendet. Am Ende einer statistischen Modellbildung steht z. B. in der Regel die Überprüfung der Modellvoraussetzungen und die Beurteilung der Modellgüte, wobei oft wieder deskriptive und explorative Verfahren zum Einsatz kommen. Ein wichtiger Grund für die heute weit verbreitete Anwendung von deskriptiver Statistik und explorativer Datenanalyse sind sicher die damit einhergehenden, großen Entwicklungen in der Datenverarbeitung, in der Datenverfügbarkeit und bei statistischen Analysesoftwaresystemen.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

3. Punktschätzung

Zusammenfassung
Im Folgenden untersuchen wir Verfahren mit denen man aufgrund von Ergebnissen eines Zufallsexperiments Rückschlüsse auf die zugrunde liegende Verteilung ziehen kann. Die in Frage kommenden Verteilungen werden durch geeignete Wahrscheinlichkeitsmaße beschrieben, die von Parametern abhängen, die aus einer Stichprobe geschätzt werden. In diesem Kapitel stellen wir insbesondere die Konsistenz und die asymptotische Normalverteilung von Maximum Likelihood Schätzern dar, die man beispielsweise für die Herleitung von Konfidenzintervallen benötigt.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

4. Hypothesentests

Zusammenfassung
Hypothesentests bilden einen der Kernbereiche der Statistik. Zunächst werden einige grundlegende Begriffe der Testtheorie wiederholt. Für Parametertests bei Normalverteilungsannahme wird der Stichprobenumfang untersucht, der notwendig ist, um vorgegebene Schranken für den Fehler zweiter Art einzuhalten. Für die Situation in der nicht die Normalverteilung vorliegt, wird der Likelihood Quotienten Test beschrieben. Abschließend werden nicht parametrische Verfahren dargestellt.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

5. Simulation

Zusammenfassung
Zunächst werden Methoden zur Erzeugung von Zufallszahlen, die auf dem Intervall \((0{,}1)\) gleichverteilt sind, dargestellt. Daraus können mit der Inversionsmethode und dem Verwerfungsverfahren prinzipiell Zufallszahlen für jede andere Verteilung generiert werden. Für einige Verteilungen gibt es leistungsfähigere Verfahren, die auf speziellen Eigenschaften der jeweiligen Verteilungen beruhen.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

6. Stochastische Prozesse und Modelle

Zusammenfassung
Um die Dynamik von Zufallsvariablen im Zeitverlauf zu modellieren, bedient man sich stochastischer Prozesse. Endliche Markov-Ketten und endliche Markov-Prozesse sind stochastische Prozesse in einem endlichen Zustandsraum und diskreter bzw. stetiger Zeit, welche durch die Eigenschaft der Gedächtnislosigkeit charakterisiert sind. Bestimmend für deren Langzeitverhalten sind die Eigenwerte der zugehörigen Übergangs- bzw. Fundamentalmatrizen. Mit allgemeinen (nicht notwendigerweise endlichen) Markov-Prozessen verfügt man über eine Klasse von stochastischen Prozessen, die mit dem Wiener-Prozess, der Brownsche Bewegung mit Drift, dem Poisson-Prozess sowie dem zusammengesetzten Poisson-Prozess wichtige Modellansätze für die aktuarielle und finanzmathematische Anwendung umfasst. In diesem Kontext stellt sich insbesondere die Frage nach Ruinwahrscheinlichkeiten in Markov-Prozessen. Diese kann aus einer fundamentalen Grenzwertbeziehung abgeleitet werden und besitzt im Fall der Brownschen Bewegung mit Drift eine explizite Darstellung bzw. im Fall des zusammengesetzten Poisson-Prozesses eine Reihendarstellung.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

7. Biometrie

Zusammenfassung
Biometrische Rechnungsgrundlagen spielen für die Bewertung von Versicherungsleistungen im Bereich der Personenversicherung eine wesentliche Rolle. Zunächst werden Methoden zur Bestimmung von rohen Ausscheidewahrscheinlichkeiten vorgestellt, sodann Ausgleichverfahren für deren Glättung. Die zukünftigen Änderungen werden mit Hilfe von Trends berücksichtigt. Mit statistischen Tests kann man überprüfen, ob vorgegebene Rechnungsgrundlagen zu einem gegebenen Bestand passen. Schließlich werden Verfahren dargestellt, um Sicherheiten einzubeziehen.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

8. Lineare und verallgemeinerte lineare Regression

Zusammenfassung
Regression stellt das klassische Instrument der Statistik dar, um eine beobachtete abhängige Variable durch Kovariaten zu modellieren. In linearen Modellen werden die Kovariaten in einer Designmatrix zusammengeführt, mit der die Regressionsgleichung formuliert wird. Klassische lineare Modelle gehen dabei, bis auf eine ggf. vorgegebene Gewichtung, von einer für alle Beobachtungen einheitlichen Varianz aus. Die Parameterschätzung kann durch die Methode der kleinsten Quadrate bzw. mit der Maximum-Likelihood-Methode unter Normalverteilungsannahme erfolgen. Verallgemeinerte lineare Modelle erlauben den flexibleren Ansatz einer Varianz, die Funktion des Erwartungswerts der abhängigen Variable ist, und vermeiden die Normalverteilungsannahme. Die wesentlichen Schritte der Modellanpassung sind eine explorative Analyse zur Identifikation der Varianzfunktion, die Maximum-Likelihood-Schätzung der Parameter und die Analyse der Residuen. Verallgemeinerte lineare Modelle stellen aufgrund ihrer hohen Flexibilität aktuell das Standardmodell in der Tarifkalkulation dar, können aber auch für zahlreiche andere Fragestellungen aus der aktuariellen Praxis genutzt werden.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

9. Credibility-Modelle

Zusammenfassung
Credibility-Modelle werden in der Versicherungsmathematik überall dort eingesetzt, wo keine „Massendaten“ vorliegen (die z. B. eine Behandlung mit Methoden der Regressionsanalyse erlauben), sondern Risiken mit sehr individuellen, zum Teil nicht direkt beobachtbaren Risikomerkmalen. Diese Risikomerkmale werden in Form eines zufälligen Strukturparameters beschrieben. Im Bayes’schen Modell wird eine a-priori-Einschätzung der Verteilung des Strukturparameters durch Schadenbeobachtungen zu einer a-posteri-Einschätzung verfeinert, auf deren Basis die sogenannte Credibility-Prämie für das betrachtete Risiko abgeleitet wird. Demgegenüber verfolgt das Bühlmann-Straub-Modell einen verteilungsfreien Ansatz, der das Einzelrisiko eingebettet in einen Gesamtbestand betrachtet, dessen Schadenerwartungswert \(E(X)\) ist. Das Modell führt eine angemessene Gewichtung des Schadenerwartungswerts \(E(X)\) und des am individuellen Risiko beobachteten mittleren Schadens \(\overline{X}\) herbei. Das Bindeglied zwischen den beiden Modellansätzen stellt die sogenannte linearisierte Credibility-Prämie dar.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

10. Anhang: bedingte Verteilungen

Zusammenfassung
In diesem Anhang wird der Begriff der bedingten Verteilung in Erinnerung gerufen. Gleichzeitig gibt er eine Zusammenfassung der wichtigsten Rechenregeln für bedingte Verteilungen und daraus abgeleitete Größen wie den bedingten Erwartungswert oder die bedingte Varianz.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

11. Anhang: erzeugende Funktionen

Zusammenfassung
Es werden die wichtigsten Ergebnisse zu den wahrscheinlichkeits- und momentenerzeugenden Funktionen bereitgestellt.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

12. Anhang: spezielle Verteilungen

Zusammenfassung
Es werden die für die aktuariellen Anwendungen wichtigsten Verteilungen und deren Eigenschaften zusammengestellt.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

13. Anhang: stochastische Konvergenz

Zusammenfassung
Es werden grundlegende Definitionen und Ergebnisse zur Konvergenz von Folgen von Zufallsvariablen bereitgestellt.
Torsten Becker, Richard Herrmann, Viktor Sandor, Dominik Schäfer, Ulrich Wellisch

Backmatter

Weitere Informationen

Premium Partner

    Bildnachweise