Skip to main content

2019 | OriginalPaper | Buchkapitel

10. Storage of Hydrogen on Nanoporous Adsorbents

verfasst von : Philip L. Llewellyn

Erschienen in: Nanoporous Materials for Gas Storage

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The adsorption of hydrogen has extensively been studied on various nanoporous adsorbents with the driving force being the need to safely store this increasingly important energy vector. This chapter explores the research avenues that have been taken for the storage of hydrogen with zeolites, carbon-based materials, and metal-organic frameworks. Many studies have been devoted to characterization at 77 K and 1 bar.
This chapter highlights that few materials meet the accepted requirements for vehicular hydrogen storage at 77 K and that no material seems to be of interest for hydrogen storage at room temperature. A general need to store the hydrogen under significant pressure is evident. It is clear that there is general necessity for nanoporous materials to stimulate stronger interactions with hydrogen for an adsorptive-based solution to be envisaged, and several strategies are described to this end.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Elam CC, Gregoire Padró CE, Sandrock G, Luzzi A, Lindblad P, Fjermestad Hagen E (2003) Realizing the hydrogen future: the international energy agency’s efforts to advance hydrogen energy technologies. Int J Hydrog Energy 28(6):601–607CrossRef Elam CC, Gregoire Padró CE, Sandrock G, Luzzi A, Lindblad P, Fjermestad Hagen E (2003) Realizing the hydrogen future: the international energy agency’s efforts to advance hydrogen energy technologies. Int J Hydrog Energy 28(6):601–607CrossRef
2.
Zurück zum Zitat Banerjee S, Musa MN, Jaafar AB (2017) Economic assessment and prospect of hydrogen generated by OTEC as future fuel. Int J Hydrog Energy 42(1):26–37CrossRef Banerjee S, Musa MN, Jaafar AB (2017) Economic assessment and prospect of hydrogen generated by OTEC as future fuel. Int J Hydrog Energy 42(1):26–37CrossRef
3.
Zurück zum Zitat Petitpas G, Bénard P, Klebanoffc LE, Aceves XS (2014) A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods. Int J Hydrog Energy 39(20):10564–10584CrossRef Petitpas G, Bénard P, Klebanoffc LE, Aceves XS (2014) A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods. Int J Hydrog Energy 39(20):10564–10584CrossRef
4.
Zurück zum Zitat Bhatia SK, Myers AL (2006) Optimum conditions for adsorptive storage. Langmuir 22(4):1688–1700CrossRef Bhatia SK, Myers AL (2006) Optimum conditions for adsorptive storage. Langmuir 22(4):1688–1700CrossRef
5.
Zurück zum Zitat Garrone E, Bonelli B, Areán CO (2008) Enthalpy–entropy correlation for hydrogen adsorption on zeolites. Chem Phys Lett 456(1–3):68–70CrossRef Garrone E, Bonelli B, Areán CO (2008) Enthalpy–entropy correlation for hydrogen adsorption on zeolites. Chem Phys Lett 456(1–3):68–70CrossRef
6.
Zurück zum Zitat Bae Y-S, Snurr RQ (2010) Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal-organic frameworks. Micro Meso Mater 132(1–2):300–303CrossRef Bae Y-S, Snurr RQ (2010) Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal-organic frameworks. Micro Meso Mater 132(1–2):300–303CrossRef
7.
Zurück zum Zitat Rogacka J, Firlej L, Kuchta B (2017) Modeling of low temperature adsorption of hydrogen in carbon nanopores. J Mol Model 23(1):20CrossRef Rogacka J, Firlej L, Kuchta B (2017) Modeling of low temperature adsorption of hydrogen in carbon nanopores. J Mol Model 23(1):20CrossRef
8.
Zurück zum Zitat Bénard P, Chahine R (2007) Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr Mater 56(10):803–808CrossRef Bénard P, Chahine R (2007) Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr Mater 56(10):803–808CrossRef
9.
Zurück zum Zitat Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KSW (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, Oxford Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KSW (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, Oxford
10.
Zurück zum Zitat Bastos-Neto M, Patzschke C, Lange M, Möllmer J, Möller A, Fichtner S, Schrage C, Lässig D, Lincke J, Staudt R, Krautscheidc H, Gläser (2012) Assessment of hydrogen storage by physisorption in porous materials. Energy Environ Sci 5(8):8294–8303CrossRef Bastos-Neto M, Patzschke C, Lange M, Möllmer J, Möller A, Fichtner S, Schrage C, Lässig D, Lincke J, Staudt R, Krautscheidc H, Gläser (2012) Assessment of hydrogen storage by physisorption in porous materials. Energy Environ Sci 5(8):8294–8303CrossRef
11.
Zurück zum Zitat Broom DP, Hirscher M (2016) Irreproducibility in hydrogen storage material research. Energy Environ Sci 9(11):3368–3380CrossRef Broom DP, Hirscher M (2016) Irreproducibility in hydrogen storage material research. Energy Environ Sci 9(11):3368–3380CrossRef
12.
Zurück zum Zitat Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types. Elsevier, Amsterdam Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types. Elsevier, Amsterdam
13.
Zurück zum Zitat Treacy MMJ, Rivin I, Balkovsky E, Randall KH, Foster MD (2004) Enumeration of periodic tetrahedral frameworks. II Polynodal graphs. Micro Meso Mater 74(1–3):121–132CrossRef Treacy MMJ, Rivin I, Balkovsky E, Randall KH, Foster MD (2004) Enumeration of periodic tetrahedral frameworks. II Polynodal graphs. Micro Meso Mater 74(1–3):121–132CrossRef
14.
Zurück zum Zitat Weitkamp J, Fritz M, Ernst S (1995) Zeolites as media for hydrogen storage. Int J Hydrog Energy 20(12):967–970CrossRef Weitkamp J, Fritz M, Ernst S (1995) Zeolites as media for hydrogen storage. Int J Hydrog Energy 20(12):967–970CrossRef
15.
Zurück zum Zitat Dong J, Wang X, Xu H, Zhao Q, Li J (2007) Hydrogen storage in several microporous zeolites. Int J Hydrog Energy 32(18):4998–5004CrossRef Dong J, Wang X, Xu H, Zhao Q, Li J (2007) Hydrogen storage in several microporous zeolites. Int J Hydrog Energy 32(18):4998–5004CrossRef
16.
Zurück zum Zitat Fraenkel D, Shabtai J (1977) Encapsulation of hydrogen in molecular sieve zeolites. J Am Chem Soc 99(21):7074–7076CrossRef Fraenkel D, Shabtai J (1977) Encapsulation of hydrogen in molecular sieve zeolites. J Am Chem Soc 99(21):7074–7076CrossRef
17.
Zurück zum Zitat Efstathiou AM, Siub SL, Bennett CO (1990) Encapsulation of molecular hydrogen in zeolites at 1 atm. J Catal 123(2):456–462CrossRef Efstathiou AM, Siub SL, Bennett CO (1990) Encapsulation of molecular hydrogen in zeolites at 1 atm. J Catal 123(2):456–462CrossRef
18.
Zurück zum Zitat Langmi HW, Walton A, Al-Mamouri MM, Johnson SR, Book D, Speight JD, Edwards PP, Gameson I, Anderson PA, Harris IR (2003) Hydrogen adsorption in zeolites A, X, Y and RHO. J Alloys Compd 356–357:710–715CrossRef Langmi HW, Walton A, Al-Mamouri MM, Johnson SR, Book D, Speight JD, Edwards PP, Gameson I, Anderson PA, Harris IR (2003) Hydrogen adsorption in zeolites A, X, Y and RHO. J Alloys Compd 356–357:710–715CrossRef
19.
Zurück zum Zitat Langmi HW, Book D, Walton A, Johnson SR, Al-Mamouri MM, Speight JD, Edwards PP, Harris IR, Anderson PA (2005) Hydrogen storage in ion-exchanged zeolites. J. Alloys Compd 404–406:637–642CrossRef Langmi HW, Book D, Walton A, Johnson SR, Al-Mamouri MM, Speight JD, Edwards PP, Harris IR, Anderson PA (2005) Hydrogen storage in ion-exchanged zeolites. J. Alloys Compd 404–406:637–642CrossRef
20.
Zurück zum Zitat Li Y, Yang RT (2006) Hydrogen storage in low silica type X zeolites. J Phys Chem B 110(34):17175–17181CrossRef Li Y, Yang RT (2006) Hydrogen storage in low silica type X zeolites. J Phys Chem B 110(34):17175–17181CrossRef
21.
Zurück zum Zitat Zecchina A, Bordiga S, Vitillo JG, Ricchiardi G, Lamberti C, Spoto G, Bjørgen M, Lillerud KP (2005) Liquid hydrogen in protonic Chabazite. J Am Chem Soc 127(17):6361–6366CrossRef Zecchina A, Bordiga S, Vitillo JG, Ricchiardi G, Lamberti C, Spoto G, Bjørgen M, Lillerud KP (2005) Liquid hydrogen in protonic Chabazite. J Am Chem Soc 127(17):6361–6366CrossRef
22.
Zurück zum Zitat Regli L, Zecchina A, Vitillo JG, Cocina D, Spoto G, Lamberti C, Lillerud KP, Olsbye U, Bordiga S (2005) Phys Chem Chem Phys 7(17):3197–3203CrossRef Regli L, Zecchina A, Vitillo JG, Cocina D, Spoto G, Lamberti C, Lillerud KP, Olsbye U, Bordiga S (2005) Phys Chem Chem Phys 7(17):3197–3203CrossRef
23.
Zurück zum Zitat Kazansky VB, Borovkov VY, Serich A, Karge HG (1998) Low temperature hydrogen adsorption on sodium forms of faujasites: barometric measurements and drift spectra. Micro Meso Mater 22(1–3):251–259CrossRef Kazansky VB, Borovkov VY, Serich A, Karge HG (1998) Low temperature hydrogen adsorption on sodium forms of faujasites: barometric measurements and drift spectra. Micro Meso Mater 22(1–3):251–259CrossRef
24.
Zurück zum Zitat Chahine R, Bose TK (1994) Low-pressure adsorption storage of hydrogen. Int J Hydrog Energy 19(2):161–164CrossRef Chahine R, Bose TK (1994) Low-pressure adsorption storage of hydrogen. Int J Hydrog Energy 19(2):161–164CrossRef
25.
Zurück zum Zitat Poirier E, Chahine R, Bose TK (2001) Hydrogen adsorption in carbon nanostructures. Int J Hydrog Energy 26(8):831–835CrossRef Poirier E, Chahine R, Bose TK (2001) Hydrogen adsorption in carbon nanostructures. Int J Hydrog Energy 26(8):831–835CrossRef
26.
Zurück zum Zitat Marsh H, Rodriguez-Reinoso F (2006) Activated carbon. Elsevier, AmsterdamCrossRef Marsh H, Rodriguez-Reinoso F (2006) Activated carbon. Elsevier, AmsterdamCrossRef
27.
Zurück zum Zitat Bottani EJ, Tascon JMD (2011) Adsorption by carbons. Elsevier, Amsterdam Bottani EJ, Tascon JMD (2011) Adsorption by carbons. Elsevier, Amsterdam
28.
Zurück zum Zitat Tascon JMD (2012) Novel carbon adsorbents. Elsevier, Amsterdam Tascon JMD (2012) Novel carbon adsorbents. Elsevier, Amsterdam
29.
Zurück zum Zitat Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120(3–4):389–398CrossRef Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120(3–4):389–398CrossRef
30.
Zurück zum Zitat Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280CrossRef Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280CrossRef
31.
Zurück zum Zitat Panella B, Hirscher M, Roth S (2005) Hydrogen adsorption in different carbon nanostructures. Carbon 43(10):2209–2214CrossRef Panella B, Hirscher M, Roth S (2005) Hydrogen adsorption in different carbon nanostructures. Carbon 43(10):2209–2214CrossRef
32.
Zurück zum Zitat Jin H, Lee YS, Hong I (2007) Hydrogen adsorption characteristics of activated carbon. Catal Today 120(3–4):399–406CrossRef Jin H, Lee YS, Hong I (2007) Hydrogen adsorption characteristics of activated carbon. Catal Today 120(3–4):399–406CrossRef
33.
Zurück zum Zitat Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131(20):7016–7022CrossRef Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131(20):7016–7022CrossRef
34.
Zurück zum Zitat Zhang C, Geng Z, Cai M, Zhang J, Lin X, Xina H, Ma J (2013) Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int J Hydrog Energy 38(22):9243–9250CrossRef Zhang C, Geng Z, Cai M, Zhang J, Lin X, Xina H, Ma J (2013) Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int J Hydrog Energy 38(22):9243–9250CrossRef
35.
Zurück zum Zitat Figueroa-Torres MZ, Robau-Sánchez A, De la Torre-Sáenz L, Aguilar-Elguézabal A (2007) Hydrogen adsorption by nanostructured carbons synthesized by chemical activation. Micro Meso Mater 98(1–3):89–93CrossRef Figueroa-Torres MZ, Robau-Sánchez A, De la Torre-Sáenz L, Aguilar-Elguézabal A (2007) Hydrogen adsorption by nanostructured carbons synthesized by chemical activation. Micro Meso Mater 98(1–3):89–93CrossRef
36.
Zurück zum Zitat Tellez-Juárez MC, Fierro V, Zhao W, Fernández-Huerta N, Izquierdo MT, Reguera E, Celzard A (2014) Hydrogen storage in activated carbons produced from coals of different ranks: effect of oxygen content. Int J Hydrog Energy 39(10):4996–5002CrossRef Tellez-Juárez MC, Fierro V, Zhao W, Fernández-Huerta N, Izquierdo MT, Reguera E, Celzard A (2014) Hydrogen storage in activated carbons produced from coals of different ranks: effect of oxygen content. Int J Hydrog Energy 39(10):4996–5002CrossRef
37.
Zurück zum Zitat Sevilla M, Mokaya R, Fuertes AB (2011) Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy Environ Sci 4(8):2930–2936CrossRef Sevilla M, Mokaya R, Fuertes AB (2011) Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy Environ Sci 4(8):2930–2936CrossRef
38.
Zurück zum Zitat Masikan E, Mokaya R (2013) Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage. Prog Nat Sci Mater Int 23(3):308–316CrossRef Masikan E, Mokaya R (2013) Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage. Prog Nat Sci Mater Int 23(3):308–316CrossRef
39.
Zurück zum Zitat Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129(6):1673–1679CrossRef Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129(6):1673–1679CrossRef
40.
Zurück zum Zitat Zhao X, Xiao B, Fletcher AJ, Thomas KM (2005) Hydrogen adsorption on functionalized Nanoporous activated carbons. J Phys Chem B 109(18):8880–8888CrossRef Zhao X, Xiao B, Fletcher AJ, Thomas KM (2005) Hydrogen adsorption on functionalized Nanoporous activated carbons. J Phys Chem B 109(18):8880–8888CrossRef
41.
Zurück zum Zitat Ströbel R, Jörissen L, Schliermann T, Trapp V, Schütz W, Bohmhammel K, Wolf G, Garche J (1999) Hydrogen adsorption on carbon materials. J Power Sources 84(2):221–224CrossRef Ströbel R, Jörissen L, Schliermann T, Trapp V, Schütz W, Bohmhammel K, Wolf G, Garche J (1999) Hydrogen adsorption on carbon materials. J Power Sources 84(2):221–224CrossRef
42.
Zurück zum Zitat Hou P-X, Xu S-T, Ying Z, Yang Q-H, Liu C, Cheng H-M (2003) Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41(13):2471–2476CrossRef Hou P-X, Xu S-T, Ying Z, Yang Q-H, Liu C, Cheng H-M (2003) Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41(13):2471–2476CrossRef
43.
Zurück zum Zitat Kuchta B, Firlej L, Mohammadhosseini A, Boulet P, Beckner M, Romanos J, Pfeifer P (2012) Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks. J Am Chem Soc 134(36):15130–15137CrossRef Kuchta B, Firlej L, Mohammadhosseini A, Boulet P, Beckner M, Romanos J, Pfeifer P (2012) Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks. J Am Chem Soc 134(36):15130–15137CrossRef
44.
Zurück zum Zitat Kuchta B, Firlej L, Mohammadhosseini A, Beckner M, Romanos J, Pfeifer P (2013) Open carbon frameworks – a search for optimal geometry for hydrogen storage. J Mol Mod 19(10):4079–4087CrossRef Kuchta B, Firlej L, Mohammadhosseini A, Beckner M, Romanos J, Pfeifer P (2013) Open carbon frameworks – a search for optimal geometry for hydrogen storage. J Mol Mod 19(10):4079–4087CrossRef
45.
Zurück zum Zitat Firlej L, Pfeifer P, Kuchta B (2013) Understanding universal adsorption limits for hydrogen storage in Nano porous systems. Adv Mater 25(41):5971–5974CrossRef Firlej L, Pfeifer P, Kuchta B (2013) Understanding universal adsorption limits for hydrogen storage in Nano porous systems. Adv Mater 25(41):5971–5974CrossRef
46.
Zurück zum Zitat Pang JB, Hampsey JE, Wu ZW, Hu QY, Lu YF (2004) Hydrogen adsorption in mesoporous carbons. Appl Phys Lett 85(21):4887–4889CrossRef Pang JB, Hampsey JE, Wu ZW, Hu QY, Lu YF (2004) Hydrogen adsorption in mesoporous carbons. Appl Phys Lett 85(21):4887–4889CrossRef
47.
Zurück zum Zitat Gadiou R, Saadallah S-E, Piquero T, David P, Parmentier J, Vix-Guterl C (2005) The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons. Micro Meso Mater 79(1–3):121–128CrossRef Gadiou R, Saadallah S-E, Piquero T, David P, Parmentier J, Vix-Guterl C (2005) The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons. Micro Meso Mater 79(1–3):121–128CrossRef
48.
Zurück zum Zitat Ustinov EA, Gavrilov VY, Mel’gunov MS, Sokolov VV, Berveno VP, Berveno AV (2017) Characterization of activated carbons with low-temperature hydrogen adsorption. Carbon 121(1):563–573CrossRef Ustinov EA, Gavrilov VY, Mel’gunov MS, Sokolov VV, Berveno VP, Berveno AV (2017) Characterization of activated carbons with low-temperature hydrogen adsorption. Carbon 121(1):563–573CrossRef
49.
Zurück zum Zitat Yushin G, Dash R, Jagiello J, Fischer JE, Gogotsi Y (2006) Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv Funct Mater 16(17):2288–2293CrossRef Yushin G, Dash R, Jagiello J, Fischer JE, Gogotsi Y (2006) Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv Funct Mater 16(17):2288–2293CrossRef
50.
Zurück zum Zitat Sethia G, Sayari A (2016) Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 99:289–294CrossRef Sethia G, Sayari A (2016) Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 99:289–294CrossRef
51.
Zurück zum Zitat Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127(46):16006–16007CrossRef Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127(46):16006–16007CrossRef
52.
Zurück zum Zitat Sevilla M, Fuertes AB, Mokaya R (2011) Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. Int J Hydrog Energy 36(24):15658–15663CrossRef Sevilla M, Fuertes AB, Mokaya R (2011) Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. Int J Hydrog Energy 36(24):15658–15663CrossRef
53.
Zurück zum Zitat Gogotsi Y, Portet C, Osswald S, Simmons JM, Yildirim T, Laudisio G, Fischer JE (2009) Importance of pore size in high-pressure hydrogen storage by porous carbons. Int J Hydrog Energy 34(15):6314–6319CrossRef Gogotsi Y, Portet C, Osswald S, Simmons JM, Yildirim T, Laudisio G, Fischer JE (2009) Importance of pore size in high-pressure hydrogen storage by porous carbons. Int J Hydrog Energy 34(15):6314–6319CrossRef
54.
Zurück zum Zitat Cabria I, Lopez MJ, Alonso JA (2007) The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45:2649–2658CrossRef Cabria I, Lopez MJ, Alonso JA (2007) The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45:2649–2658CrossRef
55.
Zurück zum Zitat Garcia Blanco AA, de Oliveira JCA, Lopez R, Moreno-Pirajan JC, Giraldo L, Zgrablich G, Sapag K (2010) A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf A Physicochem Eng Asp 357(1–3):74–83CrossRef Garcia Blanco AA, de Oliveira JCA, Lopez R, Moreno-Pirajan JC, Giraldo L, Zgrablich G, Sapag K (2010) A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf A Physicochem Eng Asp 357(1–3):74–83CrossRef
56.
Zurück zum Zitat Goler S, Coletti C, Tozzini V, Piazza V, Mashoff T, Beltram F, Pellegrini V, Heun S (2013) Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. J Phys Chem C 117(22):11506–11513CrossRef Goler S, Coletti C, Tozzini V, Piazza V, Mashoff T, Beltram F, Pellegrini V, Heun S (2013) Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. J Phys Chem C 117(22):11506–11513CrossRef
57.
Zurück zum Zitat Murata K, Kaneko K, Kanoh H, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J Phys Chem B 106(43):11132–11138CrossRef Murata K, Kaneko K, Kanoh H, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J Phys Chem B 106(43):11132–11138CrossRef
58.
Zurück zum Zitat Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74(16):2307–2309CrossRef Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74(16):2307–2309CrossRef
59.
Zurück zum Zitat Yang FH, Lachawiec AJ, Yang RT (2006) Adsorption of spillover hydrogen atoms on Single-Wall carbon nanotubes. Phys Chem B 110(12):6236–6244CrossRef Yang FH, Lachawiec AJ, Yang RT (2006) Adsorption of spillover hydrogen atoms on Single-Wall carbon nanotubes. Phys Chem B 110(12):6236–6244CrossRef
60.
Zurück zum Zitat Ansón A, Jagiello J, Parra JB, Sanjuán ML, Benito AM, Maser WK, Martínez MT (2004) Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. J Phys Chem B 108(40):15820–15826CrossRef Ansón A, Jagiello J, Parra JB, Sanjuán ML, Benito AM, Maser WK, Martínez MT (2004) Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. J Phys Chem B 108(40):15820–15826CrossRef
61.
Zurück zum Zitat Wang Q, Johnson JK (1999) Optimization of carbon nanotube arrays for hydrogen adsorption. J Phys Chem B 103(23):4809–4813CrossRef Wang Q, Johnson JK (1999) Optimization of carbon nanotube arrays for hydrogen adsorption. J Phys Chem B 103(23):4809–4813CrossRef
62.
Zurück zum Zitat Wang Q, Johnson JK (1999b) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110(1):577–586CrossRef Wang Q, Johnson JK (1999b) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110(1):577–586CrossRef
63.
Zurück zum Zitat Schimmel HG, Kearley GJ, Nijkamp MG, Visser CT, de Jong KP, Mulder FM (2003) Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. Chem Eur J 9(19):4764–4770CrossRef Schimmel HG, Kearley GJ, Nijkamp MG, Visser CT, de Jong KP, Mulder FM (2003) Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. Chem Eur J 9(19):4764–4770CrossRef
64.
Zurück zum Zitat Zhou L, Zhou Y, Sun Y (2004) A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes. Int J Hydrog Energy 29(5):475–479CrossRef Zhou L, Zhou Y, Sun Y (2004) A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes. Int J Hydrog Energy 29(5):475–479CrossRef
65.
Zurück zum Zitat Liu F, Zhang X, Cheng J, Tu J, Kong F, Huang W, Chen C (2003) Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon 41(13):2527–2532CrossRef Liu F, Zhang X, Cheng J, Tu J, Kong F, Huang W, Chen C (2003) Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon 41(13):2527–2532CrossRef
66.
Zurück zum Zitat Darkrim Lamari F, Levesque D (2011) Hydrogen adsorption on functionalized graphene. Carbon 49(15):5196–5200CrossRef Darkrim Lamari F, Levesque D (2011) Hydrogen adsorption on functionalized graphene. Carbon 49(15):5196–5200CrossRef
67.
Zurück zum Zitat Firlej L, Roszak S, Kuchta B, Pfeifer P, Wexler C (2009) Enhanced hydrogen adsorption in boron substituted carbon nanospaces. J Chem Phys 131:164702CrossRef Firlej L, Roszak S, Kuchta B, Pfeifer P, Wexler C (2009) Enhanced hydrogen adsorption in boron substituted carbon nanospaces. J Chem Phys 131:164702CrossRef
68.
Zurück zum Zitat Roszak R, Firlej L, Roszak S, Pfeifer P, Kuchta B (2016) Hydrogen storage by adsorption in porous materials: is it possible? Coll Surf A Physicochem Eng Asp 496(10):69–76CrossRef Roszak R, Firlej L, Roszak S, Pfeifer P, Kuchta B (2016) Hydrogen storage by adsorption in porous materials: is it possible? Coll Surf A Physicochem Eng Asp 496(10):69–76CrossRef
69.
Zurück zum Zitat Ariharan A, Viswanathan B, Nandhakumar V (2016) Hydrogen storage on boron substituted carbon materials. Int J Hydrog Energy 41(5):3527–3536CrossRef Ariharan A, Viswanathan B, Nandhakumar V (2016) Hydrogen storage on boron substituted carbon materials. Int J Hydrog Energy 41(5):3527–3536CrossRef
70.
Zurück zum Zitat Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ (1984) Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc 106(2):451–452CrossRef Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ (1984) Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc 106(2):451–452CrossRef
71.
Zurück zum Zitat Giraudet S, Zhu Z (2011) Hydrogen adsorption in nitrogen enriched ordered mesoporous carbons doped with nickel nanoparticles. Carbon 49(2):398–405CrossRef Giraudet S, Zhu Z (2011) Hydrogen adsorption in nitrogen enriched ordered mesoporous carbons doped with nickel nanoparticles. Carbon 49(2):398–405CrossRef
72.
Zurück zum Zitat Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef
73.
Zurück zum Zitat Saha D, Deng S (2009) Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru. Langmuir 25(21):12550–12560CrossRef Saha D, Deng S (2009) Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru. Langmuir 25(21):12550–12560CrossRef
74.
Zurück zum Zitat Nishihara H, Hou P-X, Li L-X, Ito M, Uchiyama M, Kaburagi T, Ikura A, Katamura J, Kawarada T, Mizuuchi K, Kyotani T (2009) High-pressure hydrogen storage in zeolite-templated carbon. J Phys Chem C 113(8):3189–3196CrossRef Nishihara H, Hou P-X, Li L-X, Ito M, Uchiyama M, Kaburagi T, Ikura A, Katamura J, Kawarada T, Mizuuchi K, Kyotani T (2009) High-pressure hydrogen storage in zeolite-templated carbon. J Phys Chem C 113(8):3189–3196CrossRef
75.
Zurück zum Zitat Contescu CI, Brown CM, Liu Y, Bhat VV, Gallego NC (2009) Detection of hydrogen spillover in palladium-modified activated carbon fibers during hydrogen adsorption. J Phys Chem C 113(14):5886–5890CrossRef Contescu CI, Brown CM, Liu Y, Bhat VV, Gallego NC (2009) Detection of hydrogen spillover in palladium-modified activated carbon fibers during hydrogen adsorption. J Phys Chem C 113(14):5886–5890CrossRef
76.
Zurück zum Zitat Takagi H, Hatori H, Yamada Y, Matsuo S, Shiraishi M (2004) Hydrogen adsorption properties of activated carbons with modified surfaces. J Alloys Compd 385(1–2):257–263CrossRef Takagi H, Hatori H, Yamada Y, Matsuo S, Shiraishi M (2004) Hydrogen adsorption properties of activated carbons with modified surfaces. J Alloys Compd 385(1–2):257–263CrossRef
77.
Zurück zum Zitat Ahluwali RK, Peng JK (2009) Automotive hydrogen storage system using cryo-adsorption on activated carbon. Int J Hydrog Energy 34(13):5476–5487CrossRef Ahluwali RK, Peng JK (2009) Automotive hydrogen storage system using cryo-adsorption on activated carbon. Int J Hydrog Energy 34(13):5476–5487CrossRef
78.
Zurück zum Zitat Richard M-A, Cossement D, Chandonia P-A, Chahine R, Mori D, Hirose K (2009) Preliminary evaluation of the performance of an adsorption-based hydrogen storage system. AICHE J 55(11):2985–2996CrossRef Richard M-A, Cossement D, Chandonia P-A, Chahine R, Mori D, Hirose K (2009) Preliminary evaluation of the performance of an adsorption-based hydrogen storage system. AICHE J 55(11):2985–2996CrossRef
79.
Zurück zum Zitat Kitagawa S, Kitaura R, Noro SI (2004) Functional Porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375CrossRef Kitagawa S, Kitaura R, Noro SI (2004) Functional Porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375CrossRef
80.
Zurück zum Zitat Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Micro Meso Mater 73(1–2):3–14CrossRef Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Micro Meso Mater 73(1–2):3–14CrossRef
81.
Zurück zum Zitat Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111(15):5962–5964CrossRef Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111(15):5962–5964CrossRef
82.
Zurück zum Zitat Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67CrossRef Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67CrossRef
83.
Zurück zum Zitat Ding S-Y, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42(2):548–568CrossRef Ding S-Y, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42(2):548–568CrossRef
84.
Zurück zum Zitat Jiang J-X, Cooper AI (2010) Functional metal-organic frameworks: gas storage, separation and catalysis (M. Schröder Ed.). Topics in Current Chemistry, vol. 293, pp 1–33 Jiang J-X, Cooper AI (2010) Functional metal-organic frameworks: gas storage, separation and catalysis (M. Schröder Ed.). Topics in Current Chemistry, vol. 293, pp 1–33
85.
Zurück zum Zitat Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472CrossRef Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472CrossRef
86.
Zurück zum Zitat Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214CrossRef Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214CrossRef
87.
Zurück zum Zitat Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714CrossRef Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714CrossRef
88.
Zurück zum Zitat Yaghi OM, Li H (1995) Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc 117(41):10401–10402CrossRef Yaghi OM, Li H (1995) Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc 117(41):10401–10402CrossRef
89.
Zurück zum Zitat Férey G (2001) Microporous solids: from organically templated inorganic skeletons to hybrid frameworks ... Ecumenism in Chemistry. Chem Mater 13(10):3084–3098CrossRef Férey G (2001) Microporous solids: from organically templated inorganic skeletons to hybrid frameworks ... Ecumenism in Chemistry. Chem Mater 13(10):3084–3098CrossRef
90.
Zurück zum Zitat Kondo M, Yoshitomi T, Seki K, Matsuzaka H, Kitagawa S (1997) Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew Chem Int Ed 36:1725–1727CrossRef Kondo M, Yoshitomi T, Seki K, Matsuzaka H, Kitagawa S (1997) Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew Chem Int Ed 36:1725–1727CrossRef
91.
Zurück zum Zitat Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504CrossRef Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504CrossRef
92.
Zurück zum Zitat Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38(5):1294–1314CrossRef Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38(5):1294–1314CrossRef
93.
Zurück zum Zitat Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129CrossRef Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129CrossRef
94.
Zurück zum Zitat Han SS, Mendoza-Cortés JL, Goddard WA III (2009) Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chem Soc Rev 38(5):1460–1476CrossRef Han SS, Mendoza-Cortés JL, Goddard WA III (2009) Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chem Soc Rev 38(5):1460–1476CrossRef
95.
Zurück zum Zitat Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129(46):14176–14177CrossRef Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129(46):14176–14177CrossRef
96.
Zurück zum Zitat Robson H, Lillerud KP (eds) (2001) Verified syntheses of Zeolitic materials. Elsevier, Amsterdam Robson H, Lillerud KP (eds) (2001) Verified syntheses of Zeolitic materials. Elsevier, Amsterdam
97.
Zurück zum Zitat Low JJ, Benin AI, Jakubczak P, Abrahamian JF, Faheem SA, Willis RR (2009) Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J Am Chem Soc 131(43):15834–15842CrossRef Low JJ, Benin AI, Jakubczak P, Abrahamian JF, Faheem SA, Willis RR (2009) Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J Am Chem Soc 131(43):15834–15842CrossRef
98.
Zurück zum Zitat Álvarez JR, Sánchez-González E, Pérez E, Schneider-Revueltas E, Martínez A, Tejeda-Cruz A, Islas-Jácome A, González-Zamora E, Ibarra IA (2017) Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties. Dalton Trans 46(28):9192–9200CrossRef Álvarez JR, Sánchez-González E, Pérez E, Schneider-Revueltas E, Martínez A, Tejeda-Cruz A, Islas-Jácome A, González-Zamora E, Ibarra IA (2017) Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties. Dalton Trans 46(28):9192–9200CrossRef
99.
Zurück zum Zitat Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042CrossRef Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042CrossRef
100.
Zurück zum Zitat Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851CrossRef Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851CrossRef
101.
Zurück zum Zitat Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT (2012) Metal−organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134(36):15016–15021CrossRef Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT (2012) Metal−organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134(36):15016–15021CrossRef
102.
Zurück zum Zitat Panella B, Hirscher M, Pütter H, Müller U (2006) Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16(4):520–524CrossRef Panella B, Hirscher M, Pütter H, Müller U (2006) Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16(4):520–524CrossRef
103.
Zurück zum Zitat Frost H, Düren T, Snurr RQ (2006) Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal−organic frameworks. J Phys Chem B 110(19):9565–9570CrossRef Frost H, Düren T, Snurr RQ (2006) Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal−organic frameworks. J Phys Chem B 110(19):9565–9570CrossRef
104.
Zurück zum Zitat Rowsell JLC, Eckert J, Yaghi OM (2005) Characterization of H2 binding sites in prototypical metal−organic frameworks by inelastic neutron scattering. J Am Chem Soc 127(42):14904–14910CrossRef Rowsell JLC, Eckert J, Yaghi OM (2005) Characterization of H2 binding sites in prototypical metal−organic frameworks by inelastic neutron scattering. J Am Chem Soc 127(42):14904–14910CrossRef
105.
Zurück zum Zitat Yildirim T, Hartman MR (2005) Direct observation of hydrogen adsorption sites and Nanocage formation in metal-organic frameworks. Phys Rev Lett 95(21):215504CrossRef Yildirim T, Hartman MR (2005) Direct observation of hydrogen adsorption sites and Nanocage formation in metal-organic frameworks. Phys Rev Lett 95(21):215504CrossRef
106.
Zurück zum Zitat Yan Y, Lin X, Yang S, Blake AJ, Dailly A, Champness NR, Hubberstey P, Schröder M (2009) Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem Commun 9:1025–1027CrossRef Yan Y, Lin X, Yang S, Blake AJ, Dailly A, Champness NR, Hubberstey P, Schröder M (2009) Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem Commun 9:1025–1027CrossRef
107.
Zurück zum Zitat Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder M (2009) High capacity hydrogen adsorption in Cu(II) Tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131(6):2159–2171CrossRef Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder M (2009) High capacity hydrogen adsorption in Cu(II) Tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131(6):2159–2171CrossRef
108.
Zurück zum Zitat Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal−organic frameworks. J Am Chem Soc 128(11):3494–3495CrossRef Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal−organic frameworks. J Am Chem Soc 128(11):3494–3495CrossRef
109.
Zurück zum Zitat Ahmed A, Liu YY, Purewal J, Tran LD, Wong-Foy AG, Veenstra M, Matzger AJ, Siegel DJ (2017) Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ Sci 10(11):2459–2471CrossRef Ahmed A, Liu YY, Purewal J, Tran LD, Wong-Foy AG, Veenstra M, Matzger AJ, Siegel DJ (2017) Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ Sci 10(11):2459–2471CrossRef
110.
Zurück zum Zitat Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of Nanoporous crystals. Chem Mater 26(21):6185–6192CrossRef Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of Nanoporous crystals. Chem Mater 26(21):6185–6192CrossRef
111.
Zurück zum Zitat Gómez-Gualdrón DA, Colón YJ, Zhang X, Wang TC, Chen Y-S, Hupp JT, Yildirim T, Farha OK, Zhang J, Snurr RQ (2016) Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ Sci 9(10):3279–3289CrossRef Gómez-Gualdrón DA, Colón YJ, Zhang X, Wang TC, Chen Y-S, Hupp JT, Yildirim T, Farha OK, Zhang J, Snurr RQ (2016) Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ Sci 9(10):3279–3289CrossRef
112.
Zurück zum Zitat Sillar K, Hofmann A, Sauer J (2009) Ab initio study of hydrogen adsorption in MOF-5. J Am Chem Soc 131(11):4143–4150CrossRef Sillar K, Hofmann A, Sauer J (2009) Ab initio study of hydrogen adsorption in MOF-5. J Am Chem Soc 131(11):4143–4150CrossRef
113.
Zurück zum Zitat Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bjrgen M, Hafizovic J, Lillerud KP (2005) Interaction of hydrogen with MOF-5. J Phys Chem B 109(39):18237–18242CrossRef Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bjrgen M, Hafizovic J, Lillerud KP (2005) Interaction of hydrogen with MOF-5. J Phys Chem B 109(39):18237–18242CrossRef
114.
Zurück zum Zitat Kubota Y, Takata M, Matsuda R, Kitaura R, Kitagawa S, Kato K, Sakata M, Kobayashi MC (2005) Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer. Angew Chem Int Ed 44(6):920–923CrossRef Kubota Y, Takata M, Matsuda R, Kitaura R, Kitagawa S, Kato K, Sakata M, Kobayashi MC (2005) Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer. Angew Chem Int Ed 44(6):920–923CrossRef
115.
Zurück zum Zitat Chavan S, Vitillo JG, Gianolio D, Zavorotynska O, Civalleri B, Jakobsen S, Nilsen MH, Valenzano L, Lamberti C, Lillerud KP, Bordiga S (2012) H2 storage in isostructural UiO-67 and UiO-66 MOFs. Phys Chem Chem Phys 14(5):1614–1626CrossRef Chavan S, Vitillo JG, Gianolio D, Zavorotynska O, Civalleri B, Jakobsen S, Nilsen MH, Valenzano L, Lamberti C, Lillerud KP, Bordiga S (2012) H2 storage in isostructural UiO-67 and UiO-66 MOFs. Phys Chem Chem Phys 14(5):1614–1626CrossRef
116.
Zurück zum Zitat Chun H, Dybtsev DN, Kim H, Kim K (2005) Synthesis, X-ray crystal structures, and gas sorption properties of Pillared Square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem Eur J 11(12):3521–3529CrossRef Chun H, Dybtsev DN, Kim H, Kim K (2005) Synthesis, X-ray crystal structures, and gas sorption properties of Pillared Square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem Eur J 11(12):3521–3529CrossRef
117.
Zurück zum Zitat Dinca M, Long JR (2005) Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3. J Am Chem Soc 127(26):9376–9377CrossRef Dinca M, Long JR (2005) Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3. J Am Chem Soc 127(26):9376–9377CrossRef
118.
Zurück zum Zitat Han SS, Deng W-Q, Goddard WA III (2007) Improved designs of metal-organic frameworks for hydrogen storage. Angew Chem Int Ed 46(33):6289–6292CrossRef Han SS, Deng W-Q, Goddard WA III (2007) Improved designs of metal-organic frameworks for hydrogen storage. Angew Chem Int Ed 46(33):6289–6292CrossRef
119.
Zurück zum Zitat Dinca M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47(36):6766–6779CrossRef Dinca M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47(36):6766–6779CrossRef
120.
Zurück zum Zitat Getman RB, Bae Y-S, Wilmer CE, Snurr RQ (2012) Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem Rev 112(2):703–723CrossRef Getman RB, Bae Y-S, Wilmer CE, Snurr RQ (2012) Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem Rev 112(2):703–723CrossRef
121.
Zurück zum Zitat Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal−organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128(51):16876–16883CrossRef Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal−organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128(51):16876–16883CrossRef
122.
Zurück zum Zitat Dinca M, Long JR (2007) High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal−organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. J Am Chem Soc 129(36):11172–11176CrossRef Dinca M, Long JR (2007) High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal−organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. J Am Chem Soc 129(36):11172–11176CrossRef
123.
Zurück zum Zitat Latroche M, Surblé S, Serre C, Mellot-Draznieks C, Llewellyn PL, Lee J-H, Chang J-S, Jhung SH, Férey G (2006) Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew Chem Int Ed 45(48):8227–8231CrossRef Latroche M, Surblé S, Serre C, Mellot-Draznieks C, Llewellyn PL, Lee J-H, Chang J-S, Jhung SH, Férey G (2006) Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew Chem Int Ed 45(48):8227–8231CrossRef
124.
Zurück zum Zitat Dybtsev D, Serre C, Schmitz B, Panella B, Hirscher M, Latroche M, Llewellyn PL, Cordier S, Molard Y, Haouas M, Taulelle F, Férey G (2010) Influence of [Mo6Br8F6]2− cluster unit inclusion within the mesoporous solid MIL-101 on hydrogen storage performance. Langmuir 26(13):11283–11290CrossRef Dybtsev D, Serre C, Schmitz B, Panella B, Hirscher M, Latroche M, Llewellyn PL, Cordier S, Molard Y, Haouas M, Taulelle F, Férey G (2010) Influence of [Mo6Br8F6]2− cluster unit inclusion within the mesoporous solid MIL-101 on hydrogen storage performance. Langmuir 26(13):11283–11290CrossRef
125.
Zurück zum Zitat Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Zecchina A, Solari PL, Kongshaug KO, Bordiga S (2006) Local structure of framework Cu(II) in HKUST-1 Metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chem Mater 18(5):1337–1346CrossRef Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Zecchina A, Solari PL, Kongshaug KO, Bordiga S (2006) Local structure of framework Cu(II) in HKUST-1 Metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chem Mater 18(5):1337–1346CrossRef
126.
Zurück zum Zitat Bordiga S, Regli L, Bonino F, Groppo E, Lamberti C, Xiao B, Wheatley PS, Morris RE, Zecchina A (2007) Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys Chem Chem Phys 9(21):2676–2685CrossRef Bordiga S, Regli L, Bonino F, Groppo E, Lamberti C, Xiao B, Wheatley PS, Morris RE, Zecchina A (2007) Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys Chem Chem Phys 9(21):2676–2685CrossRef
127.
Zurück zum Zitat Yang QY, Zhong CL (2006) Understanding hydrogen adsorption in metal−organic frameworks with open metal sites: a computational study. J Phys Chem B 110(2):655–658CrossRef Yang QY, Zhong CL (2006) Understanding hydrogen adsorption in metal−organic frameworks with open metal sites: a computational study. J Phys Chem B 110(2):655–658CrossRef
128.
Zurück zum Zitat Dietzel PD, Morita Y, Blom R, Fjellvåg H (2005) An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. Angew Chem Int Ed 44(39):6354–6358CrossRef Dietzel PD, Morita Y, Blom R, Fjellvåg H (2005) An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. Angew Chem Int Ed 44(39):6354–6358CrossRef
129.
Zurück zum Zitat Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvåg H (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961CrossRef Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvåg H (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961CrossRef
130.
Zurück zum Zitat Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127(5):1504–1518CrossRef Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127(5):1504–1518CrossRef
131.
Zurück zum Zitat Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal−organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130(46):15268–15269CrossRef Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal−organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130(46):15268–15269CrossRef
132.
Zurück zum Zitat Dietzel PDC, Georgiev PA, Eckert J, Blom R, Strässle T, Unruh T (2010) Interaction of hydrogen with accessible metal sites in the metal–organic frameworks M2(dhtp) (CPO-27-M; M = Ni, Co, Mg). Chem Commun 46(27):4962–4964CrossRef Dietzel PDC, Georgiev PA, Eckert J, Blom R, Strässle T, Unruh T (2010) Interaction of hydrogen with accessible metal sites in the metal–organic frameworks M2(dhtp) (CPO-27-M; M = Ni, Co, Mg). Chem Commun 46(27):4962–4964CrossRef
133.
Zurück zum Zitat Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, Bordiga S, Zecchina A (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130(26):8386–8396CrossRef Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, Bordiga S, Zecchina A (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130(26):8386–8396CrossRef
134.
Zurück zum Zitat Liu Y, Kabbour H, Brown CM, Neumann DA, Ahn CC (2008) Increasing the density of adsorbed hydrogen with Coordinatively unsaturated metal centers in metal−organic frameworks. Langmuir 24(9):4772–4777CrossRef Liu Y, Kabbour H, Brown CM, Neumann DA, Ahn CC (2008) Increasing the density of adsorbed hydrogen with Coordinatively unsaturated metal centers in metal−organic frameworks. Langmuir 24(9):4772–4777CrossRef
135.
Zurück zum Zitat Meilikhov M, Yusenko K, Esken D, Turner S, Van Tendeloo G, Fischer RA (2010) Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions. Eur J Inorg Chem 24:3701–3714CrossRef Meilikhov M, Yusenko K, Esken D, Turner S, Van Tendeloo G, Fischer RA (2010) Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions. Eur J Inorg Chem 24:3701–3714CrossRef
136.
Zurück zum Zitat Li Y, Yang RT (2006) Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J Am Chem Soc 128(3):726–727CrossRef Li Y, Yang RT (2006) Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J Am Chem Soc 128(3):726–727CrossRef
137.
Zurück zum Zitat Li Y, Yang RT (2008) Hydrogen storage in metal-organic and covalent-organic frameworks by spillover. AICHE J 54(1):269–279CrossRef Li Y, Yang RT (2008) Hydrogen storage in metal-organic and covalent-organic frameworks by spillover. AICHE J 54(1):269–279CrossRef
138.
Zurück zum Zitat Wang L, Yang RT (2008) New sorbents for hydrogen storage by hydrogen spillover – a review. Energy Environ Sci 1(2):268–279CrossRef Wang L, Yang RT (2008) New sorbents for hydrogen storage by hydrogen spillover – a review. Energy Environ Sci 1(2):268–279CrossRef
139.
Zurück zum Zitat Liu Y-Y, Zeng J-L, Zhang J, Xu F, Sun L-X (2007) Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect. Int J Hydrog Energy 32(16):4005–4010CrossRef Liu Y-Y, Zeng J-L, Zhang J, Xu F, Sun L-X (2007) Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect. Int J Hydrog Energy 32(16):4005–4010CrossRef
140.
Zurück zum Zitat Proch S, Herrmannsdörfer J, Kempe R, Kern C, Jess A, Seyfarth L, Senker J (2008) Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis. Chem Eur J 14(27):8204–8212CrossRef Proch S, Herrmannsdörfer J, Kempe R, Kern C, Jess A, Seyfarth L, Senker J (2008) Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis. Chem Eur J 14(27):8204–8212CrossRef
141.
Zurück zum Zitat Zlotea C, Campesi R, Cuevas F, Leroy E, Dibandjo P, Volkringer C, Loiseau T, Férey G, Latroche M (2010) Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Am Chem Soc 132(9):2991–2997CrossRef Zlotea C, Campesi R, Cuevas F, Leroy E, Dibandjo P, Volkringer C, Loiseau T, Férey G, Latroche M (2010) Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Am Chem Soc 132(9):2991–2997CrossRef
142.
Zurück zum Zitat Blomqvist A, Moysés Araújo C, Srepusharawoot P, Ahuja R (2007) Li-decorated metal–organic framework 5: a route to achieving a suitable hydrogen storage medium. PNAS 104(51):20173–20176CrossRef Blomqvist A, Moysés Araújo C, Srepusharawoot P, Ahuja R (2007) Li-decorated metal–organic framework 5: a route to achieving a suitable hydrogen storage medium. PNAS 104(51):20173–20176CrossRef
143.
Zurück zum Zitat Li A, Lu R-F, Wang Y, Wang X, Han K-L, Deng W-Q (2010) Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew Chem Int Ed 49(19):3330–3333CrossRef Li A, Lu R-F, Wang Y, Wang X, Han K-L, Deng W-Q (2010) Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew Chem Int Ed 49(19):3330–3333CrossRef
144.
Zurück zum Zitat Yang S, Lin X, Blake AJ, Thomas KM, Hubberstey P, Champness NR, Schröder M (2008) Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chem Commun 46:6108–6110CrossRef Yang S, Lin X, Blake AJ, Thomas KM, Hubberstey P, Champness NR, Schröder M (2008) Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chem Commun 46:6108–6110CrossRef
145.
Zurück zum Zitat Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Ed Engl 44(30):4670–4679CrossRef Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Ed Engl 44(30):4670–4679CrossRef
146.
Zurück zum Zitat Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129(27):1858–1859CrossRef Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129(27):1858–1859CrossRef
147.
Zurück zum Zitat Zhao X, Xiao B, Fletcher AJ, Thomas KM, Bradshaw D, Rosseinsky MJ (2004) Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Sceince 306(5698):1012–1015CrossRef Zhao X, Xiao B, Fletcher AJ, Thomas KM, Bradshaw D, Rosseinsky MJ (2004) Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Sceince 306(5698):1012–1015CrossRef
148.
Zurück zum Zitat Zhao D, Yuan D, Zhou H-C (2008) The current status of hydrogen storage in metalorganic frameworks. Energy Environ Sci 1(2):222–235CrossRef Zhao D, Yuan D, Zhou H-C (2008) The current status of hydrogen storage in metalorganic frameworks. Energy Environ Sci 1(2):222–235CrossRef
149.
Zurück zum Zitat Frost H, Snurr RQ (2007) Design requirements for metal-organic frameworks as hydrogen storage materials. J Phys Chem C 111(50):18794–18803CrossRef Frost H, Snurr RQ (2007) Design requirements for metal-organic frameworks as hydrogen storage materials. J Phys Chem C 111(50):18794–18803CrossRef
150.
Zurück zum Zitat Thomas KM (2009) Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans 9:1487–1505CrossRef Thomas KM (2009) Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans 9:1487–1505CrossRef
151.
Zurück zum Zitat Ben T, Pei C, Zhang D, Xu J, Deng F, Jing X, Qiu S (2011) Gas storage in porous aromatic frameworks (PAFs). Energy Environ Sci 4(10):3991CrossRef Ben T, Pei C, Zhang D, Xu J, Deng F, Jing X, Qiu S (2011) Gas storage in porous aromatic frameworks (PAFs). Energy Environ Sci 4(10):3991CrossRef
Metadaten
Titel
Storage of Hydrogen on Nanoporous Adsorbents
verfasst von
Philip L. Llewellyn
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3504-4_10