Skip to main content
Erschienen in: Water Resources Management 1/2014

01.01.2014

Stormwater Capture Efficiency of Bioretention Systems

verfasst von: Shouhong Zhang, Yiping Guo

Erschienen in: Water Resources Management | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bioretention systems are increasingly being used to control the adverse effects of urbanization on stormwater quantity and quality. The stormwater capture efficiency of a bioretention system, defined as the fraction of stormwater volume captured by the system, can be used as an important index of its stormwater management performance. In this paper, an analytical probabilistic expression (APE) is derived for estimating the long-term average stormwater capture efficiency of bioretention systems. The derivation is based on the probability distribution functions of the input rainfall event characteristics and the rainfall-runoff-overflow transformations occurring on a bioretention system and its contributing catchment. In the derivation, instead of simply adopting the Howard’s conservative assumption as used in many previous studies, an approximate expected value of the surface depression water contents of a bioretention system at the end of a random rainfall event [denoted as E(S dw )] is derived and used. The accuracy of the resulting APE is verified by comparing its results with those determined from continuous simulations. The use of E(S dw ) is proven to be advantageous than the use of the Howard’s conservative assumption, it demonstrates that similar methods may be developed to analytically evaluate the stormwater management performance of other types of storage facilities for which the Howard’s conservative assumption was employed previously.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adams BJ, Papa F (2000) Urban stormwater management planning with analytical probabilistic models. Wiley, New York Adams BJ, Papa F (2000) Urban stormwater management planning with analytical probabilistic models. Wiley, New York
Zurück zum Zitat Adams BJ, Fraser HG, Howard CDD, Hanafy MS (1986) Meteorologic data analysis for drainage system design. J Environ Eng 112(5):827–848CrossRef Adams BJ, Fraser HG, Howard CDD, Hanafy MS (1986) Meteorologic data analysis for drainage system design. J Environ Eng 112(5):827–848CrossRef
Zurück zum Zitat American Society of Civil Engineers (ASCE) (2012) Design of urban stormwater controls, manuals of practice (MOP) 87. McGraw-Hill Inc., New York American Society of Civil Engineers (ASCE) (2012) Design of urban stormwater controls, manuals of practice (MOP) 87. McGraw-Hill Inc., New York
Zurück zum Zitat Aravena JE, Dussaillant A (2009) Stormwater infiltration and focused recharge modeling with finite-volume two-dimensional Richards equation: Application to an experimental rain garden. J Hydraul Eng 135(12):1073–1080CrossRef Aravena JE, Dussaillant A (2009) Stormwater infiltration and focused recharge modeling with finite-volume two-dimensional Richards equation: Application to an experimental rain garden. J Hydraul Eng 135(12):1073–1080CrossRef
Zurück zum Zitat Bacchi B, Balistrocchi M, Grossi G (2008) Proposal of a semiprobabilistic approach for storage facility design. Urban Water J 5(3):195–208CrossRef Bacchi B, Balistrocchi M, Grossi G (2008) Proposal of a semiprobabilistic approach for storage facility design. Urban Water J 5(3):195–208CrossRef
Zurück zum Zitat Balistrocchi M, Grossi G, Bacchi B (2009) An analytical probabilistic model of the quality efficiency of a sewer tank. Water Resour Res 45:W12420. doi:10.1029/2009WR007822 Balistrocchi M, Grossi G, Bacchi B (2009) An analytical probabilistic model of the quality efficiency of a sewer tank. Water Resour Res 45:W12420. doi:10.​1029/​2009WR007822
Zurück zum Zitat Benjamin JR, Cornell CA (1970) Probability, statistics and decision for civil engineers. McGraw-Hill Inc., New York Benjamin JR, Cornell CA (1970) Probability, statistics and decision for civil engineers. McGraw-Hill Inc., New York
Zurück zum Zitat Chen J, Adams BJ (2005) Analysis of storage facilities for urban stormwater quantity control. Adv Water Resour 28:377–392CrossRef Chen J, Adams BJ (2005) Analysis of storage facilities for urban stormwater quantity control. Adv Water Resour 28:377–392CrossRef
Zurück zum Zitat Cheng SJ, Lee CF, Lee JH (2010) Effects of urbanization factors on model parameters. Water Resour Manag 24(4):775–794CrossRef Cheng SJ, Lee CF, Lee JH (2010) Effects of urbanization factors on model parameters. Water Resour Manag 24(4):775–794CrossRef
Zurück zum Zitat Clar ML, Green R (1993) Design manual for use of bioretention in stormwater management. Department of Environmental Resources, Prince George’s County, USA. Clar ML, Green R (1993) Design manual for use of bioretention in stormwater management. Department of Environmental Resources, Prince George’s County, USA.
Zurück zum Zitat Davis AP (2008) Field performance of bioretention: Hydrology impact. J Hydrol Eng 13(2):90–95CrossRef Davis AP (2008) Field performance of bioretention: Hydrology impact. J Hydrol Eng 13(2):90–95CrossRef
Zurück zum Zitat Davis AP, Hunt WF, Traver RG, Clar M (2009) Bioretention technology: Overview of current practice and future needs. J Environ Eng 135(3):109–117CrossRef Davis AP, Hunt WF, Traver RG, Clar M (2009) Bioretention technology: Overview of current practice and future needs. J Environ Eng 135(3):109–117CrossRef
Zurück zum Zitat Davis AP, Traver RG, Hunt WF, Lee R, Brown RA, Olszewski JO (2012) Hydrologic performance of bioretention stormwater control measures. J Hydrol Eng 17(5):604–614CrossRef Davis AP, Traver RG, Hunt WF, Lee R, Brown RA, Olszewski JO (2012) Hydrologic performance of bioretention stormwater control measures. J Hydrol Eng 17(5):604–614CrossRef
Zurück zum Zitat DeBusk KM, Hunt WF, Line DE (2011) Bioretention outflow: Does it mimic nonurban watershed shallow interflow. J Hydrol Eng 16(3):274–279CrossRef DeBusk KM, Hunt WF, Line DE (2011) Bioretention outflow: Does it mimic nonurban watershed shallow interflow. J Hydrol Eng 16(3):274–279CrossRef
Zurück zum Zitat Denich C, Bradford A (2010) Estimation of evapotranspiration from bioretention areas using weighing lysimeters. J Hydrol Eng 15(6):522–530CrossRef Denich C, Bradford A (2010) Estimation of evapotranspiration from bioretention areas using weighing lysimeters. J Hydrol Eng 15(6):522–530CrossRef
Zurück zum Zitat Eagleson PS (1972) Dynamics of flood frequency. Water Resour Res 8(4):878–898CrossRef Eagleson PS (1972) Dynamics of flood frequency. Water Resour Res 8(4):878–898CrossRef
Zurück zum Zitat Emerson CH, Traver RG (2008) Multi-year and seasonal variation of infiltration from stormwater best management practices. J Irrig & Drain Eng 134(5):598–605CrossRef Emerson CH, Traver RG (2008) Multi-year and seasonal variation of infiltration from stormwater best management practices. J Irrig & Drain Eng 134(5):598–605CrossRef
Zurück zum Zitat Guo Y, Adams BJ (1998a) Hydrologic analysis of urban catchments with event-based probabilistic models, Part I: Runoff volume. Water Resour Res 34(12):3421–3431CrossRef Guo Y, Adams BJ (1998a) Hydrologic analysis of urban catchments with event-based probabilistic models, Part I: Runoff volume. Water Resour Res 34(12):3421–3431CrossRef
Zurück zum Zitat Guo Y, Adams BJ (1998b) Hydrologic analysis of urban catchments with event-based probabilistic models, Part II: Peak discharge rate. Water Resour Res 34(12):3433–3443CrossRef Guo Y, Adams BJ (1998b) Hydrologic analysis of urban catchments with event-based probabilistic models, Part II: Peak discharge rate. Water Resour Res 34(12):3433–3443CrossRef
Zurück zum Zitat Guo Y, Adams BJ (1999a) Analysis of detention ponds for stormwater quality control. Water Resour Res 35(8):2447–2456CrossRef Guo Y, Adams BJ (1999a) Analysis of detention ponds for stormwater quality control. Water Resour Res 35(8):2447–2456CrossRef
Zurück zum Zitat Guo Y, Adams BJ (1999b) An analytical probabilistic approach to sizing flood control detention facilities. Water Resour Res 35(8):2457–2468CrossRef Guo Y, Adams BJ (1999b) An analytical probabilistic approach to sizing flood control detention facilities. Water Resour Res 35(8):2457–2468CrossRef
Zurück zum Zitat Guo Y, Baetz BW (2007) Sizing of rainwater storage units for green building applications. J Hydrol Eng 12(2):197–205CrossRef Guo Y, Baetz BW (2007) Sizing of rainwater storage units for green building applications. J Hydrol Eng 12(2):197–205CrossRef
Zurück zum Zitat Guo Y, Liu S, Baetz BW (2012) Probabilistic rainfall-runoff transformation considering both infiltration and saturation excess runoff generation processes. Water Resour Res 48, W06513. doi:10.1029/2011WR011613 Guo Y, Liu S, Baetz BW (2012) Probabilistic rainfall-runoff transformation considering both infiltration and saturation excess runoff generation processes. Water Resour Res 48, W06513. doi:10.​1029/​2011WR011613
Zurück zum Zitat He Z, Davis AP (2011) Process modeling of storm-water flow in a bioretention cell. J Irrig & Drain Eng 137(3):121–131CrossRef He Z, Davis AP (2011) Process modeling of storm-water flow in a bioretention cell. J Irrig & Drain Eng 137(3):121–131CrossRef
Zurück zum Zitat Heasom W, Traver R, Welker A (2006) Hydrologic modeling of a bioinfiltration best management practice. J Am Water Resour Assoc 42(5):1329–1347CrossRef Heasom W, Traver R, Welker A (2006) Hydrologic modeling of a bioinfiltration best management practice. J Am Water Resour Assoc 42(5):1329–1347CrossRef
Zurück zum Zitat Howard CDD (1976) Theory of storage and treatment plant overflows. J Environ Eng Division 102(4):709–722 Howard CDD (1976) Theory of storage and treatment plant overflows. J Environ Eng Division 102(4):709–722
Zurück zum Zitat Huber WC, Dickinson RE (1988) Stormwater management model, version 4: User’s manual. U.S. Environmental Protection Agency, Washington Huber WC, Dickinson RE (1988) Stormwater management model, version 4: User’s manual. U.S. Environmental Protection Agency, Washington
Zurück zum Zitat Hunt WF, Smith JT, Jadlocki SJ, Hathaway JM, Eubanks PR (2008) Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. J Environ Eng 134(5):403–408CrossRef Hunt WF, Smith JT, Jadlocki SJ, Hathaway JM, Eubanks PR (2008) Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. J Environ Eng 134(5):403–408CrossRef
Zurück zum Zitat James M, Dymond R (2012) Bioretention hydrologic performance in an urban stormwater network. J Hydrol Eng 17(3):431–436CrossRef James M, Dymond R (2012) Bioretention hydrologic performance in an urban stormwater network. J Hydrol Eng 17(3):431–436CrossRef
Zurück zum Zitat Kim H, Seagren EA, Davis AP (2003) Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ Res 75(4):355–367CrossRef Kim H, Seagren EA, Davis AP (2003) Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ Res 75(4):355–367CrossRef
Zurück zum Zitat Li H, Sharkey LJ, Hunt WF, Davis AP (2009) Mitigation of impervious surface hydrology using bioretention in North Carolina and Maryland. J Hydrol Eng 14(4):407–415CrossRef Li H, Sharkey LJ, Hunt WF, Davis AP (2009) Mitigation of impervious surface hydrology using bioretention in North Carolina and Maryland. J Hydrol Eng 14(4):407–415CrossRef
Zurück zum Zitat Loganathan GV, Delleur JW (1984) Effects of urbanization on frequencies of overflows and pollutant loadings from storm sewer overflows: A derived distribution approach. Water Resour Res 20(7):857–865CrossRef Loganathan GV, Delleur JW (1984) Effects of urbanization on frequencies of overflows and pollutant loadings from storm sewer overflows: A derived distribution approach. Water Resour Res 20(7):857–865CrossRef
Zurück zum Zitat Misra AK (2011) Impact of urbanization on the hydrology of Ganga Basin (India). Water Resour Manag 25(2):705–719CrossRef Misra AK (2011) Impact of urbanization on the hydrology of Ganga Basin (India). Water Resour Manag 25(2):705–719CrossRef
Zurück zum Zitat Muthanna TM, Viklander M, Thorolfsson ST (2008) Seasonal climatic effects on the hydrology of a rain garden. Hydrol Processes 22:1640–1649CrossRef Muthanna TM, Viklander M, Thorolfsson ST (2008) Seasonal climatic effects on the hydrology of a rain garden. Hydrol Processes 22:1640–1649CrossRef
Zurück zum Zitat Rose S, Peters NE (2001) Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): A comparative hydrological approach. Hydrol Process 15(8):1441–1457CrossRef Rose S, Peters NE (2001) Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): A comparative hydrological approach. Hydrol Process 15(8):1441–1457CrossRef
Zurück zum Zitat Smith DI (1980) Probability of storage overflow for stormwater management. M.A.Sc thesis, Department of Civil Engineering, University of Toronto, Toronto Smith DI (1980) Probability of storage overflow for stormwater management. M.A.Sc thesis, Department of Civil Engineering, University of Toronto, Toronto
Zurück zum Zitat Sreeja P, Gupta K (2007) An alternate approach for transient flow modeling in urban drainage systems. Water Resour Manage 21:1225–1244CrossRef Sreeja P, Gupta K (2007) An alternate approach for transient flow modeling in urban drainage systems. Water Resour Manage 21:1225–1244CrossRef
Zurück zum Zitat Trowsdale SA, Simcock R (2011) Urban stormwater treatment using bioretention. J Hydrol 397:167–174CrossRef Trowsdale SA, Simcock R (2011) Urban stormwater treatment using bioretention. J Hydrol 397:167–174CrossRef
Zurück zum Zitat U.S. Environmental Protection Agency (USEPA) (2005) Stormwater management model user’s manual, Version 5.0, Rep. EPA/600/R-05/040. Off. of Res. and Dev., Cincinnati, Ohio U.S. Environmental Protection Agency (USEPA) (2005) Stormwater management model user’s manual, Version 5.0, Rep. EPA/600/R-05/040. Off. of Res. and Dev., Cincinnati, Ohio
Zurück zum Zitat Zhang S, Guo Y (2013) An analytical probabilistic model for evaluating the hydrologic performance of green roofs. J Hydrol Eng 18(1):19–28CrossRef Zhang S, Guo Y (2013) An analytical probabilistic model for evaluating the hydrologic performance of green roofs. J Hydrol Eng 18(1):19–28CrossRef
Metadaten
Titel
Stormwater Capture Efficiency of Bioretention Systems
verfasst von
Shouhong Zhang
Yiping Guo
Publikationsdatum
01.01.2014
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 1/2014
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-013-0477-y

Weitere Artikel der Ausgabe 1/2014

Water Resources Management 1/2014 Zur Ausgabe