Skip to main content
Erschienen in: Geotechnical and Geological Engineering 1/2022

16.06.2021 | Original Paper

Strain Energy, Yielding and Undrained Shear Characteristics of High Plasticity Compacted Clay Subjected to Stress Anisotropy

verfasst von: Naman Kantesaria, Ajanta Sachan

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This experimental study investigates the effect of K0, anisotropic and isotropic consolidation stress paths on the undrained mechanical response of compacted high plasticity clay. This type of soils is being used for the construction of the core structure in the earthen embankment dams. Therefore, undrained soil properties in saturated state are essential to obtain for the stability analysis and design of certain conditions, such as rapid drawdown case. The actual consolidation system prevailing in the field is anisotropic in nature, and it is necessary to take that into account for the determination of strength and yielding criteria of the soil. However, this effect of the consolidation system has not been studied in detail for high plasticity clay in a compacted state. A series of consolidated undrained triaxial compression and extension tests were carried out on compacted high plasticity clay with different consolidation stress ratios (Kc = σh′/σv′  = 0.70 to 1.00) and stress history (OCR = 1 to 10). Results indicated that the normalized undrained shear strength reduced with anisotropic consolidation, and its relationship with consolidation stress ratio (Kc) was found linear at each OCR levels. The reduction in strength was observed highest for extension loading condition at normally consolidated state. Strain energy dissipation response displayed that the governing strain energy mechanism shifted from volumetric to shear strain energy, as consolidation state changed from anisotropic to isotropic. Based on the obtained yield surfaces, pre-failure shear behaviour of soil was found predominantly elastic for compression loading and elasto-plastic for extension loading conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdulhadi NO, Germaine JT, Whittle AJ (2012) Stress-dependent behavior of saturated clay. Can Geotech J 49(8):907–916CrossRef Abdulhadi NO, Germaine JT, Whittle AJ (2012) Stress-dependent behavior of saturated clay. Can Geotech J 49(8):907–916CrossRef
Zurück zum Zitat Amorosi A, Rampello S (2007) An experimental investigation into the mechanical behaviour of a structured stiff clay. Géotechnique 57(2):153–166CrossRef Amorosi A, Rampello S (2007) An experimental investigation into the mechanical behaviour of a structured stiff clay. Géotechnique 57(2):153–166CrossRef
Zurück zum Zitat Anandarajah A, Kuganenthira N, Zhao D (1996) Variation of fabric anisotropy of kaolinite in triaxial loading. J Geotech Eng 122(8):633–640CrossRef Anandarajah A, Kuganenthira N, Zhao D (1996) Variation of fabric anisotropy of kaolinite in triaxial loading. J Geotech Eng 122(8):633–640CrossRef
Zurück zum Zitat ASTM International (2011) Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM D4767-11. ASTM, West Conshohocken, PA ASTM International (2011) Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM D4767-11. ASTM, West Conshohocken, PA
Zurück zum Zitat ASTM International (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM D698-12e2. ASTM, West Conshohocken, PA ASTM International (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM D698-12e2. ASTM, West Conshohocken, PA
Zurück zum Zitat ASTM International (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854-14. ASTM, West Conshohocken, PA ASTM International (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854-14. ASTM, West Conshohocken, PA
Zurück zum Zitat ASTM International (2017) Standard Practice for Classification of Soils for Engineering Purposes (Unified soil classification system). ASTM D2487-17e1. ASTM, West Conshohocken, PA ASTM International (2017) Standard Practice for Classification of Soils for Engineering Purposes (Unified soil classification system). ASTM D2487-17e1. ASTM, West Conshohocken, PA
Zurück zum Zitat ASTM International (2017) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-17e1. ASTM, West Conshohocken, PA ASTM International (2017) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-17e1. ASTM, West Conshohocken, PA
Zurück zum Zitat Bertrand F, Collin F (2017) Anisotropic modelling of opalinus clay behaviour: from triaxial tests to gallery excavation application. J Rock Mech Geotech Eng 9(3):435–448CrossRef Bertrand F, Collin F (2017) Anisotropic modelling of opalinus clay behaviour: from triaxial tests to gallery excavation application. J Rock Mech Geotech Eng 9(3):435–448CrossRef
Zurück zum Zitat Bozzano F, Bretschneider A, Martino S, Prestininzi A (2014) Time variations of the K0 coefficient in overconsolidated clays due to morphological evolution of slopes. Eng Geol 169:69–79CrossRef Bozzano F, Bretschneider A, Martino S, Prestininzi A (2014) Time variations of the K0 coefficient in overconsolidated clays due to morphological evolution of slopes. Eng Geol 169:69–79CrossRef
Zurück zum Zitat Cai Y, Hao B, Gu C, Wang J, Pan L (2018) Effect of anisotropic consolidation stress paths on the undrained shear behavior of reconstituted Wenzhou clay. Eng Geol 242:23–33CrossRef Cai Y, Hao B, Gu C, Wang J, Pan L (2018) Effect of anisotropic consolidation stress paths on the undrained shear behavior of reconstituted Wenzhou clay. Eng Geol 242:23–33CrossRef
Zurück zum Zitat Casagrande A, Carillo N (1944) Shear failure of anisotropic materials. J Boston Soc Civil Eng 31:74–87 Casagrande A, Carillo N (1944) Shear failure of anisotropic materials. J Boston Soc Civil Eng 31:74–87
Zurück zum Zitat Casey B, Germaine JT (2013) Stress dependence of shear strength in fine-grained soils and correlations with liquid limit. J Geotech Geoenviron Eng 139(10):1709–1717CrossRef Casey B, Germaine JT (2013) Stress dependence of shear strength in fine-grained soils and correlations with liquid limit. J Geotech Geoenviron Eng 139(10):1709–1717CrossRef
Zurück zum Zitat Chen YN, Yang ZX (2017) A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays. Comput Geotech 90:133–143CrossRef Chen YN, Yang ZX (2017) A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays. Comput Geotech 90:133–143CrossRef
Zurück zum Zitat Cola S, Cortellazzo G (2005) The shear strength behavior of two peaty soils. Geotech Geol Eng 23(6):679–695CrossRef Cola S, Cortellazzo G (2005) The shear strength behavior of two peaty soils. Geotech Geol Eng 23(6):679–695CrossRef
Zurück zum Zitat Davis EH, Christian JT (1970) Bearing capacity of anisotropic cohesive soil. J Soil Mech Found Div 97(5):753–769CrossRef Davis EH, Christian JT (1970) Bearing capacity of anisotropic cohesive soil. J Soil Mech Found Div 97(5):753–769CrossRef
Zurück zum Zitat Donaghe RT, Townsend FC (1978) Effects of anisotropic versus isotropic consolidation in consolidated-undrained triaxial compression tests of cohesive soils. Geotech Test J 1(4):173–189CrossRef Donaghe RT, Townsend FC (1978) Effects of anisotropic versus isotropic consolidation in consolidated-undrained triaxial compression tests of cohesive soils. Geotech Test J 1(4):173–189CrossRef
Zurück zum Zitat Duncan JM, Seed RB (1986) Compaction-induced earth pressures under K0-conditions. J Geotech Eng 112(1):1–22CrossRef Duncan JM, Seed RB (1986) Compaction-induced earth pressures under K0-conditions. J Geotech Eng 112(1):1–22CrossRef
Zurück zum Zitat Gao YB (2013) Compression and extension yield of an anisotropically consolidated soil. Soils Found 53(3):431–442CrossRef Gao YB (2013) Compression and extension yield of an anisotropically consolidated soil. Soils Found 53(3):431–442CrossRef
Zurück zum Zitat Graham J, Noonan ML, Lew KV (1983) Yield states and stress–strain relationships in a natural plastic clay. Can Geotech J 20(3):502–516CrossRef Graham J, Noonan ML, Lew KV (1983) Yield states and stress–strain relationships in a natural plastic clay. Can Geotech J 20(3):502–516CrossRef
Zurück zum Zitat Hicher PY, Wahyudi H, Tessier D (2000) Microstructural analysis of inherent and induced anisotropy in clay. Mech Cohes Frict Mater Int J Exp Model Comput Mater Struct 5(5):341–371 Hicher PY, Wahyudi H, Tessier D (2000) Microstructural analysis of inherent and induced anisotropy in clay. Mech Cohes Frict Mater Int J Exp Model Comput Mater Struct 5(5):341–371
Zurück zum Zitat Hwang J, Dewoolkar M, Ko HY (2002) Stability analysis of two-dimensional excavated slopes considering strength anisotropy. Can Geotech J 39(5):1026–1038CrossRef Hwang J, Dewoolkar M, Ko HY (2002) Stability analysis of two-dimensional excavated slopes considering strength anisotropy. Can Geotech J 39(5):1026–1038CrossRef
Zurück zum Zitat Inci G, Yesiller N, Kagawa T (2003) Experimental investigation of dynamic response of compacted clayey soils. Geotech Test J 26(2):125–141 Inci G, Yesiller N, Kagawa T (2003) Experimental investigation of dynamic response of compacted clayey soils. Geotech Test J 26(2):125–141
Zurück zum Zitat Kamei T, Nakase A (1989) Undrained shear strength anisotropy of K0-overconsolidated cohesive soils. Soils Found 29(3):145–151CrossRef Kamei T, Nakase A (1989) Undrained shear strength anisotropy of K0-overconsolidated cohesive soils. Soils Found 29(3):145–151CrossRef
Zurück zum Zitat Kuganenthira N, Zhao D, Anandarajah A (1996) Measurement of fabric anisotropy in triaxial shearing. Geotechnique 46(4):657–670CrossRef Kuganenthira N, Zhao D, Anandarajah A (1996) Measurement of fabric anisotropy in triaxial shearing. Geotechnique 46(4):657–670CrossRef
Zurück zum Zitat Ladd CC, Foott R (1974) New design procedure for stability of soft clays. J Geotech Eng ASCE 100(GT7):763–786 Ladd CC, Foott R (1974) New design procedure for stability of soft clays. J Geotech Eng ASCE 100(GT7):763–786
Zurück zum Zitat Lade PV (2016) Triaxial testing of soils. Wiley-Blackwell, Hoboken, ISBN: 978-1-119-10662-3 Lade PV (2016) Triaxial testing of soils. Wiley-Blackwell, Hoboken, ISBN: 978-1-119-10662-3
Zurück zum Zitat Lade PV, Wang Q (2012) Method for uniform strain extension tests on sand. Geotech Test J 35(4):607–617CrossRef Lade PV, Wang Q (2012) Method for uniform strain extension tests on sand. Geotech Test J 35(4):607–617CrossRef
Zurück zum Zitat Law KT, Holtz RD (1978) A note on Skempton’s A parameter with rotation of principal stresses. Géotechnique 28(1):57–64CrossRef Law KT, Holtz RD (1978) A note on Skempton’s A parameter with rotation of principal stresses. Géotechnique 28(1):57–64CrossRef
Zurück zum Zitat Lee KL, Morrison RA (1970) Strength of anisotropically consolidated compacted clay. J Soil Mech Found 96(SM6):2025–2043 Lee KL, Morrison RA (1970) Strength of anisotropically consolidated compacted clay. J Soil Mech Found 96(SM6):2025–2043
Zurück zum Zitat Lo KY (1966) Stability of slopes in anisotropic soils. J Soil Mech Found Div 91(a):85–106 Lo KY (1966) Stability of slopes in anisotropic soils. J Soil Mech Found Div 91(a):85–106
Zurück zum Zitat Meng GH, Chu J (2011) Shear strength properties of a residual soil in Singapore. Soils Found 51(4):565–573CrossRef Meng GH, Chu J (2011) Shear strength properties of a residual soil in Singapore. Soils Found 51(4):565–573CrossRef
Zurück zum Zitat Mitachi T, Kitago S (1976) Change in undrained shear strength characteristics of saturated remolded clay due to swelling. Soils Found 16(1):45–58CrossRef Mitachi T, Kitago S (1976) Change in undrained shear strength characteristics of saturated remolded clay due to swelling. Soils Found 16(1):45–58CrossRef
Zurück zum Zitat Monroy R, Zdravkovic L, Ridley A (2009) Evolution of microstructure in compacted London Clay during wetting and loading. Géotechnique 60(2):105–119CrossRef Monroy R, Zdravkovic L, Ridley A (2009) Evolution of microstructure in compacted London Clay during wetting and loading. Géotechnique 60(2):105–119CrossRef
Zurück zum Zitat Noorany I, Scheyhing C (2015) Lateral extension of compacted-fill slopes in expansive soils. J Geotech Geoenviron Eng 141(1):04014083CrossRef Noorany I, Scheyhing C (2015) Lateral extension of compacted-fill slopes in expansive soils. J Geotech Geoenviron Eng 141(1):04014083CrossRef
Zurück zum Zitat Nwabuokei SO, Lovell CW (1986) Compressibility and settlement of compacted fills. In: Yong R-N, Townsend FC (eds) Proceedings of the consolidation of soils: testing and evaluation. ASTM, West Conshohocken, PA, pp 184–202 Nwabuokei SO, Lovell CW (1986) Compressibility and settlement of compacted fills. In: Yong R-N, Townsend FC (eds) Proceedings of the consolidation of soils: testing and evaluation. ASTM, West Conshohocken, PA, pp 184–202
Zurück zum Zitat Prashant A, Penumadu D (2005) Effect of overconsolidation and anisotropy of kaolin clay using true triaxial testing. Soils Found 45(3):71–82CrossRef Prashant A, Penumadu D (2005) Effect of overconsolidation and anisotropy of kaolin clay using true triaxial testing. Soils Found 45(3):71–82CrossRef
Zurück zum Zitat Rowshanzamir MA, Askari AM (2010) An investigation on the strength anisotropy of compacted clays. Appl Clay Sci 50(4):520–524CrossRef Rowshanzamir MA, Askari AM (2010) An investigation on the strength anisotropy of compacted clays. Appl Clay Sci 50(4):520–524CrossRef
Zurück zum Zitat Sachan A, Penumadu D (2007) Effect of microfabric on shear behavior of kaolin clay. J Geotech Geoenviron Eng 133(3):306–318CrossRef Sachan A, Penumadu D (2007) Effect of microfabric on shear behavior of kaolin clay. J Geotech Geoenviron Eng 133(3):306–318CrossRef
Zurück zum Zitat Sexton BG, McCabe BA, Karstunen M, Sivasithamparam N (2016) Stone column settlement performance in structured anisotropic clays: the influence of creep. J Rock Mech Geotech Eng 8(5):672–688CrossRef Sexton BG, McCabe BA, Karstunen M, Sivasithamparam N (2016) Stone column settlement performance in structured anisotropic clays: the influence of creep. J Rock Mech Geotech Eng 8(5):672–688CrossRef
Zurück zum Zitat Shi J, Qian S, Zeng LL, Bian X (2015) Influence of anisotropic consolidation stress paths on compression behaviour of reconstituted Wenzhou clay. Géotech Lett 5(4):275–280CrossRef Shi J, Qian S, Zeng LL, Bian X (2015) Influence of anisotropic consolidation stress paths on compression behaviour of reconstituted Wenzhou clay. Géotech Lett 5(4):275–280CrossRef
Zurück zum Zitat Sivakumar V, Doran IG, Graham J (2002) Particle orientation and its influence on the mechanical behaviour of isotropically consolidated reconstituted clay. Eng Geol 66(3–4):197–209CrossRef Sivakumar V, Doran IG, Graham J (2002) Particle orientation and its influence on the mechanical behaviour of isotropically consolidated reconstituted clay. Eng Geol 66(3–4):197–209CrossRef
Zurück zum Zitat Skempton AW (1954) The pore-pressure coefficients A and B. Geotechnique 4(4):143–147CrossRef Skempton AW (1954) The pore-pressure coefficients A and B. Geotechnique 4(4):143–147CrossRef
Zurück zum Zitat Tavenas F, Des Rosiers JP, Leroueil S, La Rochelle P, Roy M (1979) The use of strain energy as a yield and creep criterion for lightly overconsolidated clays. Geotechnique 29(3):285–303CrossRef Tavenas F, Des Rosiers JP, Leroueil S, La Rochelle P, Roy M (1979) The use of strain energy as a yield and creep criterion for lightly overconsolidated clays. Geotechnique 29(3):285–303CrossRef
Zurück zum Zitat Toyota H, Nakamura K, Sakai N (2003) Application of the elastic boundary induced by shear history on saturated cohesive soil. Soils Found 43(1):93–100CrossRef Toyota H, Nakamura K, Sakai N (2003) Application of the elastic boundary induced by shear history on saturated cohesive soil. Soils Found 43(1):93–100CrossRef
Zurück zum Zitat Toyota H, Sakai N, Nakamura K (2001) Mechanical properties of saturated cohesive soil with shear history under three dimensional stress conditions. Soils Found 41(6):97–110CrossRef Toyota H, Sakai N, Nakamura K (2001) Mechanical properties of saturated cohesive soil with shear history under three dimensional stress conditions. Soils Found 41(6):97–110CrossRef
Zurück zum Zitat Toyota H, Susami A, Takada S (2014) Anisotropy of undrained shear strength induced by K0 consolidation and swelling in cohesive soils. Int J Geomech 14(4):04014019CrossRef Toyota H, Susami A, Takada S (2014) Anisotropy of undrained shear strength induced by K0 consolidation and swelling in cohesive soils. Int J Geomech 14(4):04014019CrossRef
Zurück zum Zitat VandenBerge DR, Brandon TL, Duncan JM (2014) Triaxial tests on compacted clays for consolidated-undrained conditions. Geotech Test J 37(4):705–716CrossRef VandenBerge DR, Brandon TL, Duncan JM (2014) Triaxial tests on compacted clays for consolidated-undrained conditions. Geotech Test J 37(4):705–716CrossRef
Zurück zum Zitat VandenBerge DR, Duncan JM, Brandon TL (2015) Undrained strength of compacted clay under principal stress reorientation. J Geotech Geoenviron Eng 141(8):04015035CrossRef VandenBerge DR, Duncan JM, Brandon TL (2015) Undrained strength of compacted clay under principal stress reorientation. J Geotech Geoenviron Eng 141(8):04015035CrossRef
Zurück zum Zitat Wang LZ, Shen KL, Ye SH (2008) Undrained shear strength of K0 consolidated soft soils. Int J Geomech 8(2):105–113CrossRef Wang LZ, Shen KL, Ye SH (2008) Undrained shear strength of K0 consolidated soft soils. Int J Geomech 8(2):105–113CrossRef
Zurück zum Zitat Wild KM, Amann F (2018) Experimental study of the hydro-mechanical response of Opalinus Clay-Part 2: influence of the stress path on the pore pressure response. Eng Geol 237:92–101CrossRef Wild KM, Amann F (2018) Experimental study of the hydro-mechanical response of Opalinus Clay-Part 2: influence of the stress path on the pore pressure response. Eng Geol 237:92–101CrossRef
Zurück zum Zitat Yamamuro JA, Lade PV (1995) Strain localization in extension tests on granular materials. J Eng Mech 121(7):828–836 Yamamuro JA, Lade PV (1995) Strain localization in extension tests on granular materials. J Eng Mech 121(7):828–836
Zurück zum Zitat Yamamuro JA, Liu Y, Lade PV (2012) Performance and suitability of radial drainage materials in axisymmetric testing of clayey soils at high confining pressures. Geotech Test J 35(6):901–910CrossRef Yamamuro JA, Liu Y, Lade PV (2012) Performance and suitability of radial drainage materials in axisymmetric testing of clayey soils at high confining pressures. Geotech Test J 35(6):901–910CrossRef
Metadaten
Titel
Strain Energy, Yielding and Undrained Shear Characteristics of High Plasticity Compacted Clay Subjected to Stress Anisotropy
verfasst von
Naman Kantesaria
Ajanta Sachan
Publikationsdatum
16.06.2021
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 1/2022
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-021-01897-7

Weitere Artikel der Ausgabe 1/2022

Geotechnical and Geological Engineering 1/2022 Zur Ausgabe