Skip to main content

2019 | OriginalPaper | Buchkapitel

29. Strain Gradient Crystal Plasticity: Intergranular Microstructure Formation

verfasst von : İzzet Özdemir, Tuncay Yalçinkaya

Erschienen in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter addresses the formation and evolution of inhomogeneous plastic deformation field between grains in polycrystalline metals by focusing on continuum scale modeling of dislocation-grain boundary interactions within a strain gradient crystal plasticity (SGCP) framework. Thermodynamically consistent extension of a particular strain gradient plasticity model, addressed previously (see also, e.g., Yalcinkaya et al, J Mech Phys Solids 59:1–17, 2011), is presented which incorporates the effect of grain boundaries on plastic slip evolution explicitly. Among various choices, a potential-type non-dissipative grain boundary description in terms of grain boundary Burgers tensor (see, e.g., Gurtin, J Mech Phys Solids 56:640–662, 2008) is preferred since this is the essential descriptor to capture both the misorientation and grain boundary orientation effects. A mixed finite element formulation is used to discretize the problem in which both displacements and plastic slips are considered as primary variables. For the treatment of grain boundaries within the solution algorithm, an interface element is formulated. The capabilities of the framework is demonstrated through 3D bi-crystal and polycrystal examples, and potential extensions and currently pursued multi-scale modeling efforts are briefly discussed in the closure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat R.K. Abu Al-Rub, Interfacial gradient plasticity governs scale-dependent yield strength and strain hardening rates in micro/nano structured metals. Int. J. Plast. 24, 1277–1306 (2008)CrossRef R.K. Abu Al-Rub, Interfacial gradient plasticity governs scale-dependent yield strength and strain hardening rates in micro/nano structured metals. Int. J. Plast. 24, 1277–1306 (2008)CrossRef
Zurück zum Zitat K.E. Aifantis, J.R. Willis, The role of interfaces in enhancing the yield strength of composites and polycrystals. J. Mech. Phys. Solids 53, 1047–1070 (2005)MathSciNetCrossRef K.E. Aifantis, J.R. Willis, The role of interfaces in enhancing the yield strength of composites and polycrystals. J. Mech. Phys. Solids 53, 1047–1070 (2005)MathSciNetCrossRef
Zurück zum Zitat K.E. Aifantis, W.A. Soer, J.T. de Hosson, J. Willis, Interfaces within strain gradient plasticity: theory and experiments. Acta Mater. 54, 5077–5085 (2006)CrossRef K.E. Aifantis, W.A. Soer, J.T. de Hosson, J. Willis, Interfaces within strain gradient plasticity: theory and experiments. Acta Mater. 54, 5077–5085 (2006)CrossRef
Zurück zum Zitat E. Bayerschen, A.T. McBride, B.D. Reddy, T. Böhlke, Review of slip transmission criteria in experiments and crystal plasticity models. J. Mater. Sci. 51, 2243–2258 (2016)CrossRef E. Bayerschen, A.T. McBride, B.D. Reddy, T. Böhlke, Review of slip transmission criteria in experiments and crystal plasticity models. J. Mater. Sci. 51, 2243–2258 (2016)CrossRef
Zurück zum Zitat C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)CrossRef C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)CrossRef
Zurück zum Zitat U. Borg, A strain gradient crystal plasticity analysis of grain size effects in polycrystals. Eur. J. Mech. A. Solids 26, 313–324 (2007)CrossRef U. Borg, A strain gradient crystal plasticity analysis of grain size effects in polycrystals. Eur. J. Mech. A. Solids 26, 313–324 (2007)CrossRef
Zurück zum Zitat T. Borg, N.A. Fleck, Strain gradient effects in surface roughening. Model. Simul. Mater. Sci. Eng. 15, S1–S12 (2007)CrossRef T. Borg, N.A. Fleck, Strain gradient effects in surface roughening. Model. Simul. Mater. Sci. Eng. 15, S1–S12 (2007)CrossRef
Zurück zum Zitat M. de Koning, R. Miller, V.V. Bulatov, F.F. Abraham, Modelling grain boundary resistence in intergranular dislocation slip transmission. Philos. Mag. A 82, 2511–2527 (2002)CrossRef M. de Koning, R. Miller, V.V. Bulatov, F.F. Abraham, Modelling grain boundary resistence in intergranular dislocation slip transmission. Philos. Mag. A 82, 2511–2527 (2002)CrossRef
Zurück zum Zitat M. de Koning, R.J. Kurtz, V.V. Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, M. Nomura, Modeling of dislocation-grain boundary interactions. J. Nucl. Mater. 323, 281–289 (2003)CrossRef M. de Koning, R.J. Kurtz, V.V. Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, M. Nomura, Modeling of dislocation-grain boundary interactions. J. Nucl. Mater. 323, 281–289 (2003)CrossRef
Zurück zum Zitat M. Ekh, S. Bargmann, M. Grymer, Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech. 218, 103–113 (2011)CrossRef M. Ekh, S. Bargmann, M. Grymer, Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech. 218, 103–113 (2011)CrossRef
Zurück zum Zitat N.A. Fleck, J.W. Hutchinson, A formulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)CrossRef N.A. Fleck, J.W. Hutchinson, A formulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)CrossRef
Zurück zum Zitat P. Fredriksson, P. Gudmundson, Size-dependent yield strength of thin films. Int. J. Plast. 21, 1834–1854 (2005)CrossRef P. Fredriksson, P. Gudmundson, Size-dependent yield strength of thin films. Int. J. Plast. 21, 1834–1854 (2005)CrossRef
Zurück zum Zitat C. Fressengeas, V. Taupin, L. Capolunga, Continuous modeling of the structure f symmetric tilt boundaries. Int. J. Solids Struct. 51, 1434–1441 (2014)CrossRef C. Fressengeas, V. Taupin, L. Capolunga, Continuous modeling of the structure f symmetric tilt boundaries. Int. J. Solids Struct. 51, 1434–1441 (2014)CrossRef
Zurück zum Zitat M.G.D. Geers, W.A.M. Brekelmans, C.J. Bayley, Second-order crystal plasticity: internal stress effects and cyclic loading. Model. Simul. Mater. Sci. Eng. 15, 133–145 (2007)CrossRef M.G.D. Geers, W.A.M. Brekelmans, C.J. Bayley, Second-order crystal plasticity: internal stress effects and cyclic loading. Model. Simul. Mater. Sci. Eng. 15, 133–145 (2007)CrossRef
Zurück zum Zitat D. Gottschalk, A. McBride, B.D. Reddy, A. Javili, P. Wriggers, C.B. Hirschberger, Computational and theoretical aspects of a grain-boundary model that accounts for grain misorientation and grain-boundary orientation. Comput. Mater. Sci. 111, 443–459 (2016)CrossRef D. Gottschalk, A. McBride, B.D. Reddy, A. Javili, P. Wriggers, C.B. Hirschberger, Computational and theoretical aspects of a grain-boundary model that accounts for grain misorientation and grain-boundary orientation. Comput. Mater. Sci. 111, 443–459 (2016)CrossRef
Zurück zum Zitat P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)MathSciNetCrossRef P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)MathSciNetCrossRef
Zurück zum Zitat M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)MathSciNetCrossRef M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)MathSciNetCrossRef
Zurück zum Zitat M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)MathSciNetCrossRef M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)MathSciNetCrossRef
Zurück zum Zitat M.E. Gurtin, A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J. Mech. Phys. Solids 56, 640–662 (2008)MathSciNetCrossRef M.E. Gurtin, A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J. Mech. Phys. Solids 56, 640–662 (2008)MathSciNetCrossRef
Zurück zum Zitat M.E. Gurtin, L. Anand, S.P. Lele, Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55, 1853–1878 (2007)MathSciNetCrossRef M.E. Gurtin, L. Anand, S.P. Lele, Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55, 1853–1878 (2007)MathSciNetCrossRef
Zurück zum Zitat R. Kumar, F. Szekely, E. Van der Giessen, Modelling dislocation transmission across tilt grain boundaries in 2D. Comput. Mater. Sci. 49, 46–54 (2010)CrossRef R. Kumar, F. Szekely, E. Van der Giessen, Modelling dislocation transmission across tilt grain boundaries in 2D. Comput. Mater. Sci. 49, 46–54 (2010)CrossRef
Zurück zum Zitat G. Lancioni, T. Yalçinkaya, A. Cocks, Energy-based non-local plasticity models for deformation patterning, localization and fracture. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 471(2180) (2015a)CrossRef G. Lancioni, T. Yalçinkaya, A. Cocks, Energy-based non-local plasticity models for deformation patterning, localization and fracture. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 471(2180) (2015a)CrossRef
Zurück zum Zitat G. Lancioni, G. Zitti, T. Yalcinkaya, Rate-independent deformation patterning in crystal plasticity. Key Eng. Mater. 651–653, 944–949 (2015b)CrossRef G. Lancioni, G. Zitti, T. Yalcinkaya, Rate-independent deformation patterning in crystal plasticity. Key Eng. Mater. 651–653, 944–949 (2015b)CrossRef
Zurück zum Zitat T.C. Lee, I.M. Robertson, H.K. Birnbaum, Prediction of slip transfer mechanisms across grain boundaries. Scr. Metall. 23(5), 799–803 (1989)CrossRef T.C. Lee, I.M. Robertson, H.K. Birnbaum, Prediction of slip transfer mechanisms across grain boundaries. Scr. Metall. 23(5), 799–803 (1989)CrossRef
Zurück zum Zitat Z. Li, C. Hou, M. Huang, C. Ouyang, Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect. Comput. Mater. Sci. 46, 1124–1134 (2009)CrossRef Z. Li, C. Hou, M. Huang, C. Ouyang, Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect. Comput. Mater. Sci. 46, 1124–1134 (2009)CrossRef
Zurück zum Zitat A. Ma, F. Roters, D. Raabe, On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – theory, experiments, and simulations. Acta Mater. 54, 2181–2194 (2006)CrossRef A. Ma, F. Roters, D. Raabe, On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – theory, experiments, and simulations. Acta Mater. 54, 2181–2194 (2006)CrossRef
Zurück zum Zitat T.J. Massart, T. Pardoen, Strain gradient plasticity analysis of the grain-size-dependent strength and ductility of polycrystals with evolving grain boundary confinement. Acta Mater. 58, 5768–5781 (2010)CrossRef T.J. Massart, T. Pardoen, Strain gradient plasticity analysis of the grain-size-dependent strength and ductility of polycrystals with evolving grain boundary confinement. Acta Mater. 58, 5768–5781 (2010)CrossRef
Zurück zum Zitat A.T. McBride, D. Gottschalk, B.D. Reddy, P. Wriggers, A. Javili, Computational and theoretical aspects of a grain-boundary model at finite deformations. Tech. Mech. 36, 102–119 (2016) A.T. McBride, D. Gottschalk, B.D. Reddy, P. Wriggers, A. Javili, Computational and theoretical aspects of a grain-boundary model at finite deformations. Tech. Mech. 36, 102–119 (2016)
Zurück zum Zitat D.L. McDowell, Viscoplasticity of heterogeneous metallic materials. Mater. Sci. Eng. R 62, 67–123 (2008)CrossRef D.L. McDowell, Viscoplasticity of heterogeneous metallic materials. Mater. Sci. Eng. R 62, 67–123 (2008)CrossRef
Zurück zum Zitat J. Mosler, I. Scheider, A thermodynamically and variationally consistent class of damage-type cohesive models. J. Mech. Phys. Solids 59(8), 1647–1668 (2011)MathSciNetCrossRef J. Mosler, I. Scheider, A thermodynamically and variationally consistent class of damage-type cohesive models. J. Mech. Phys. Solids 59(8), 1647–1668 (2011)MathSciNetCrossRef
Zurück zum Zitat I. Özdemir, T. Yalçinkaya, Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework. Comput. Mech. 54, 255–268 (2014)MathSciNetCrossRef I. Özdemir, T. Yalçinkaya, Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework. Comput. Mech. 54, 255–268 (2014)MathSciNetCrossRef
Zurück zum Zitat Z. Shen, R.H. Wagoner, W.A.T. Clark, Dislocation pile-up and grain boundary interactions in 304 stainless steel. Scr. Metall. 20(6), 921–926 (1986)CrossRef Z. Shen, R.H. Wagoner, W.A.T. Clark, Dislocation pile-up and grain boundary interactions in 304 stainless steel. Scr. Metall. 20(6), 921–926 (1986)CrossRef
Zurück zum Zitat D.E. Spearot, D.L. McDowell, Atomistic modeling of grain boundaries and dislocation processes in metallic polycrystalline materials. J. Eng. Mater. Tech. 131, 041,204 (2009)CrossRef D.E. Spearot, D.L. McDowell, Atomistic modeling of grain boundaries and dislocation processes in metallic polycrystalline materials. J. Eng. Mater. Tech. 131, 041,204 (2009)CrossRef
Zurück zum Zitat M. Stricker, J. Gagel, S. Schmitt, K. Schulz, D. Weygand, P.B. Gumbsch, On slip transmission and grain boundary yielding. Meccanica 51, 271–278 (2016)MathSciNetCrossRef M. Stricker, J. Gagel, S. Schmitt, K. Schulz, D. Weygand, P.B. Gumbsch, On slip transmission and grain boundary yielding. Meccanica 51, 271–278 (2016)MathSciNetCrossRef
Zurück zum Zitat M.A. Tschopp, D.L. McDowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos. Mag. 87, 3871–3892 (2007)CrossRef M.A. Tschopp, D.L. McDowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos. Mag. 87, 3871–3892 (2007)CrossRef
Zurück zum Zitat P.R.M. van Beers, G.J. McShane, V.G. Kouznetsova, M.G.D. Geers, Grain boundary interface mechanics in strain gradient crystal plasticity. J. Mech. Phys. Solids 61, 2659–2679 (2013)MathSciNetCrossRef P.R.M. van Beers, G.J. McShane, V.G. Kouznetsova, M.G.D. Geers, Grain boundary interface mechanics in strain gradient crystal plasticity. J. Mech. Phys. Solids 61, 2659–2679 (2013)MathSciNetCrossRef
Zurück zum Zitat P.R.M. van Beers, V.G. Kouznetsova, M.G.D. Geers, Defect redistribution within continuum grain boundary plasticity model. J. Mech. Phys. Solids 83, 243–262 (2015a)MathSciNetCrossRef P.R.M. van Beers, V.G. Kouznetsova, M.G.D. Geers, Defect redistribution within continuum grain boundary plasticity model. J. Mech. Phys. Solids 83, 243–262 (2015a)MathSciNetCrossRef
Zurück zum Zitat P.R.M. van Beers, V.G. Kouznetsova, M.G.D. Geers, M.A. Tschopp, D.L. McDowell, A multiscale model to grain boundary structure and energy: from atomistics to a continuum description. Acta Mater. 82, 513–529 (2015b)CrossRef P.R.M. van Beers, V.G. Kouznetsova, M.G.D. Geers, M.A. Tschopp, D.L. McDowell, A multiscale model to grain boundary structure and energy: from atomistics to a continuum description. Acta Mater. 82, 513–529 (2015b)CrossRef
Zurück zum Zitat E. Van der Giessen, A. Needleman, Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689–735 (1995)CrossRef E. Van der Giessen, A. Needleman, Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689–735 (1995)CrossRef
Zurück zum Zitat D. Wolf, S Yip, Material Interfaces: Atomic-Level Structure and Properties (Chapman and Hall, London, 1992) D. Wolf, S Yip, Material Interfaces: Atomic-Level Structure and Properties (Chapman and Hall, London, 1992)
Zurück zum Zitat T. Yalçinkaya, Multi-scale modeling of microstructure evolution induced anisotropy in metals. Key Eng. Mater. 554–557, 2388–2399 (2013)CrossRef T. Yalçinkaya, Multi-scale modeling of microstructure evolution induced anisotropy in metals. Key Eng. Mater. 554–557, 2388–2399 (2013)CrossRef
Zurück zum Zitat T. Yalçinkaya, W.A.M. Brekelmans, M.G.D. Geers, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int. J. Solids Struct. 49, 2625–2636 (2012)CrossRef T. Yalçinkaya, W.A.M. Brekelmans, M.G.D. Geers, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int. J. Solids Struct. 49, 2625–2636 (2012)CrossRef
Zurück zum Zitat T. Yalcinkaya, G. Lancioni, Energy-based modeling of localization and necking in plasticity. Procedia Mater. Sci. 3, 1618–1625 (2014)CrossRef T. Yalcinkaya, G. Lancioni, Energy-based modeling of localization and necking in plasticity. Procedia Mater. Sci. 3, 1618–1625 (2014)CrossRef
Zurück zum Zitat T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Deformation patterning driven by rate dependent non-convex strain gradient plasticity. J. Mech. Phys. Solids 59, 1–17 (2011)MathSciNetCrossRef T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Deformation patterning driven by rate dependent non-convex strain gradient plasticity. J. Mech. Phys. Solids 59, 1–17 (2011)MathSciNetCrossRef
Metadaten
Titel
Strain Gradient Crystal Plasticity: Intergranular Microstructure Formation
verfasst von
İzzet Özdemir
Tuncay Yalçinkaya
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.