Skip to main content

2019 | OriginalPaper | Buchkapitel

27. Strain Gradient Plasticity: Deformation Patterning, Localization, and Fracture

verfasst von : Giovanni Lancioni, Tuncay Yalçinkaya

Erschienen in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, two different strain gradient plasticity models based on non-convex plastic energies are presented and compared through analytical estimates and numerical experiments. The models are formulated in the simple one-dimensional setting, and their ability to reproduce heterogeneous plastic strain processes is analyzed, focusing on strain localization phenomena observed in metallic materials at different length scales. In a geometrically linear context, both models are based on the additive decomposition of the strain into elastic and plastic parts. Moreover, they share the same non-convex plastic energy, and they are both characterized by the same nonlocal plastic energy as well, i.e., a quadratic form of the plastic strain gradient. In the first model, proposed in Yalçinkaya et al. (Int J Solids Struct 49:2625–2636, 2012) and Yalcinkaya (Microstructure evolution in crystal plasticity: strain path effects and dislocation slip patterning. Ph.D. thesis, Eindhoven University of Technology, 2011), the plastic energy is assumed to be conservative, and plastic dissipation is introduced through a viscous term, which makes the formulation rate-dependent. In the second model, developed in Del Piero et al. (J Mech Mater Struct 8(2–4):109–151, 2013), the plastic term is supposed to be totally dissipative. As a result, plastic deformations are not recoverable, and the resulting framework is rate-independent, contrary to the first model. First, the evolution problems resulting from the two theories are analytically solved in a special simplified case, and correlations between the shape of the plastic potential and the modeling predictions are established. Then, the models are numerically implemented by finite elements, and numerical solutions of two different one-dimensional problems, associated with different plastic energies, are determined. In the first problem, a double-well plastic energy is considered, and the evolution of plastic slip patterning observed in crystals at the mesoscale is reproduced. In the second problem, a convex-concave plastic energy is used to simulate the macroscopic response of a tensile steel bar, which experiences the so-called necking process, with plastic strains localization and final coalescing into fracture. Numerical results provided by the two models are analyzed and compared.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat E.C. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984) E.C. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)
Zurück zum Zitat C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)CrossRef C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)CrossRef
Zurück zum Zitat Z.P. Bazant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)CrossRef Z.P. Bazant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)CrossRef
Zurück zum Zitat G. Del Piero, A variational approach to fracture and other inelastic phenomena. J. Elast. 112(1), 3–77 (2013)MathSciNetCrossRef G. Del Piero, A variational approach to fracture and other inelastic phenomena. J. Elast. 112(1), 3–77 (2013)MathSciNetCrossRef
Zurück zum Zitat G. Del Piero, G. Lancioni, R. March, A diffuse cohesive energy approach to fracture and plasticity: the one-dimensional case. J. Mech. Mater. Struct. 8(2–4), 109–151 (2013)CrossRef G. Del Piero, G. Lancioni, R. March, A diffuse cohesive energy approach to fracture and plasticity: the one-dimensional case. J. Mech. Mater. Struct. 8(2–4), 109–151 (2013)CrossRef
Zurück zum Zitat P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)MathSciNetCrossRef P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)MathSciNetCrossRef
Zurück zum Zitat M. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck & Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)CrossRef M. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck & Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)CrossRef
Zurück zum Zitat M.E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodinamics of Continua (Cambridge University Press, New York, 2010)CrossRef M.E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodinamics of Continua (Cambridge University Press, New York, 2010)CrossRef
Zurück zum Zitat D. Hull, Orientation and temperature dependence of plastic deformation processes in 3⋅25 percent silicon iron. Proc. R. Soc. A 274, 5–24 (1963) D. Hull, Orientation and temperature dependence of plastic deformation processes in 3⋅25 percent silicon iron. Proc. R. Soc. A 274, 5–24 (1963)
Zurück zum Zitat M. Jirásek, S. Rolshoven, Localization properties of strain-softening gradient plasticity models. Part II. Theories with gradients of internal variables. Int. J. Solids Struct. 46, 2239–2254 (2009)MATH M. Jirásek, S. Rolshoven, Localization properties of strain-softening gradient plasticity models. Part II. Theories with gradients of internal variables. Int. J. Solids Struct. 46, 2239–2254 (2009)MATH
Zurück zum Zitat B. Klusemann, T. Yalçinkaya, Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex Helmholtz energy. Int. J. Plast. 48, 168–188 (2013)CrossRef B. Klusemann, T. Yalçinkaya, Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex Helmholtz energy. Int. J. Plast. 48, 168–188 (2013)CrossRef
Zurück zum Zitat B. Klusemann, T. Yalçinkaya, M.G.D. Geers, B. Svendsen, Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Comput. Mater. Sci. 80, 51–60 (2013)CrossRef B. Klusemann, T. Yalçinkaya, M.G.D. Geers, B. Svendsen, Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Comput. Mater. Sci. 80, 51–60 (2013)CrossRef
Zurück zum Zitat G. Lancioni, Modeling the response of tensile steel bars by means of incremental energy minimization. J. Elast. 121, 25–54 (2015)MathSciNetCrossRef G. Lancioni, Modeling the response of tensile steel bars by means of incremental energy minimization. J. Elast. 121, 25–54 (2015)MathSciNetCrossRef
Zurück zum Zitat G. Lancioni, T. Yalcinkaya, A. Cocks, Energy based non-local plasticity models for deformation patterning, localization and fracture. Proc. R. Soc. A 471, 20150275:1–20150275:23 (2015a)CrossRef G. Lancioni, T. Yalcinkaya, A. Cocks, Energy based non-local plasticity models for deformation patterning, localization and fracture. Proc. R. Soc. A 471, 20150275:1–20150275:23 (2015a)CrossRef
Zurück zum Zitat G. Lancioni, G. Zitti, T. Yalcinkaya, Rate-independent deformation patterning in crystal plasticity. Key Eng. Mater. 651–653, 944–949 (2015b)CrossRef G. Lancioni, G. Zitti, T. Yalcinkaya, Rate-independent deformation patterning in crystal plasticity. Key Eng. Mater. 651–653, 944–949 (2015b)CrossRef
Zurück zum Zitat A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in Multifield Problems in Solid and Fluid Mechanics, ed. by R. Helmig, A. Mielke, B. Wohlmuth. Lecture Notes in Applied and Computational Mechanics, vol. 28 (Springer, Berlin/Heidelberg, 2006), pp. 399–428 A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in Multifield Problems in Solid and Fluid Mechanics, ed. by R. Helmig, A. Mielke, B. Wohlmuth. Lecture Notes in Applied and Computational Mechanics, vol. 28 (Springer, Berlin/Heidelberg, 2006), pp. 399–428
Zurück zum Zitat T. Yalçinkaya, Microstructure evolution in crystal plasticity: strain path effects and dislocation slip patterning. Ph.D. thesis, Eindhoven University of Technology (2011) T. Yalçinkaya, Microstructure evolution in crystal plasticity: strain path effects and dislocation slip patterning. Ph.D. thesis, Eindhoven University of Technology (2011)
Zurück zum Zitat T. Yalçinkaya, G. Lancioni, Energy-based modeling of localization and necking in plasticity. Procedia Mater. Sci. 3, 1618–1625 (2014)CrossRef T. Yalçinkaya, G. Lancioni, Energy-based modeling of localization and necking in plasticity. Procedia Mater. Sci. 3, 1618–1625 (2014)CrossRef
Zurück zum Zitat T. Yalçinkaya, W.A.M. Brekelmans, M.G.D. Geers, Deformation patterning driven by rate dependent nonconvex strain gradient plasticity. J. Mech. Phys. Solids 59, 1–17 (2011)MathSciNetCrossRef T. Yalçinkaya, W.A.M. Brekelmans, M.G.D. Geers, Deformation patterning driven by rate dependent nonconvex strain gradient plasticity. J. Mech. Phys. Solids 59, 1–17 (2011)MathSciNetCrossRef
Zurück zum Zitat T. Yalçinkaya, W.A.M. Brekelmans, M.G.D. Geers, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int. J. Solids Struct. 49, 2625–2636 (2012)CrossRef T. Yalçinkaya, W.A.M. Brekelmans, M.G.D. Geers, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int. J. Solids Struct. 49, 2625–2636 (2012)CrossRef
Metadaten
Titel
Strain Gradient Plasticity: Deformation Patterning, Localization, and Fracture
verfasst von
Giovanni Lancioni
Tuncay Yalçinkaya
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_43

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.