Skip to main content
Erschienen in: Journal of Iron and Steel Research International 6/2021

16.01.2021 | Original Paper

Strength, strain capacity and toughness of five dual-phase pipeline steels

verfasst von: Yi Ren, Xian-bo Shi, Zhen-guo Yang, Yi-yin Shan, Wei Ye, Gui-xi Cai, Ke Yang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of microstructures on strength, strain capacity and low temperature toughness of a micro-alloyed pipeline steel was elucidated. Five various dual-phase microstructures, namely, acicular ferrite and a small amount of (around 2 vol.%) polygonal ferrite (AF + PF), polygonal ferrite and bainite (PF + B), polygonal ferrite and martensite/austenite islands (PF + M/A), polygonal ferrite and martensite (PF + M) and elongated polygonal ferrite and martensite (ePF + M), have been studied. Experimental results show that AF + PF microstructure has high yield strength and excellent low temperature toughness, whereas its yield ratio is the highest. Polygonal ferrite-based dual-phase steels, PF + B, PF + M/A and PF + M microstructures show better strain capacity and low temperature toughness. The strain capacity and low temperature toughness of ePF + M microstructure are the worst due to its high strength. The relationship between microstructure, strength, strain capacity and toughness has been established. Based on the results, the optimum microstructure for a better combination of strength, strain capacity and toughness is suggested to be the one having appropriate polygonal ferrite as second phase in an acicular ferrite matrix.
Literatur
[2]
Zurück zum Zitat A. Gervasyev, I. Pyshmintsev, R. Petrov, C. Huo, F. Barbaro, Mater. Sci. Eng. A 772 (2020) 138746.CrossRef A. Gervasyev, I. Pyshmintsev, R. Petrov, C. Huo, F. Barbaro, Mater. Sci. Eng. A 772 (2020) 138746.CrossRef
[3]
Zurück zum Zitat Z.T. Zhao, X.S. Wang, G.Y. Qiao, S.Y. Zhang, B. Liao, F.R. Xiao, Mater. Des. 180 (2019) 107870.CrossRef Z.T. Zhao, X.S. Wang, G.Y. Qiao, S.Y. Zhang, B. Liao, F.R. Xiao, Mater. Des. 180 (2019) 107870.CrossRef
[4]
Zurück zum Zitat B. Li, Q.Y. Liu, S.J. Jia, Y. Ren, B. Wang, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 1038–1048. B. Li, Q.Y. Liu, S.J. Jia, Y. Ren, B. Wang, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 1038–1048.
[5]
Zurück zum Zitat X.B. Shi, W. Yan, D. Xu, M.C. Yan, C.G. Yang, Y.Y. Shan, K. Yang, J. Mater. Sci. Technol. 34 (2018) 2480–2491.CrossRef X.B. Shi, W. Yan, D. Xu, M.C. Yan, C.G. Yang, Y.Y. Shan, K. Yang, J. Mater. Sci. Technol. 34 (2018) 2480–2491.CrossRef
[6]
Zurück zum Zitat X.D. Li, C.N. Li, G. Yuan, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 483–491. X.D. Li, C.N. Li, G. Yuan, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 483–491.
[7]
Zurück zum Zitat X.B. Shi, W. Yan, M.C. Yan, W. Wang, Z.G. Yang, Y.Y. Shan, K. Yang, Acta. Metall. Sin. (Engl. Lett.) 30 (2017) 601–613. X.B. Shi, W. Yan, M.C. Yan, W. Wang, Z.G. Yang, Y.Y. Shan, K. Yang, Acta. Metall. Sin. (Engl. Lett.) 30 (2017) 601–613.
[8]
Zurück zum Zitat X.B. Shi, W. Yan, W. Wang, Y.Y. Shan, K. Yang, Mater. Des. 92 (2016) 300–305.CrossRef X.B. Shi, W. Yan, W. Wang, Y.Y. Shan, K. Yang, Mater. Des. 92 (2016) 300–305.CrossRef
[9]
Zurück zum Zitat L.W. Tong, L.C. Niu, S. Jing, L.W. Ai, X.L. Zhao, Thin Wall. Struct. 132 (2018) 410–420. L.W. Tong, L.C. Niu, S. Jing, L.W. Ai, X.L. Zhao, Thin Wall. Struct. 132 (2018) 410–420.
[10]
Zurück zum Zitat Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.L. Wang, Z.W. Zhang, Int. J. Plasticity 116 (2019) 203–215.CrossRef Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.L. Wang, Z.W. Zhang, Int. J. Plasticity 116 (2019) 203–215.CrossRef
[11]
Zurück zum Zitat T. Shinmiya, N. Ishikawa, M. Okatsu, S. Endo, N. Shikanai, Int. J. Offshore Polar Eng. 18 (2008) 308–313. T. Shinmiya, N. Ishikawa, M. Okatsu, S. Endo, N. Shikanai, Int. J. Offshore Polar Eng. 18 (2008) 308–313.
[12]
Zurück zum Zitat X.B. Shi, W. Yan, Z.G. Yang, Y. Ren, Y.Y. Shan, K. Yang, ISIJ Int. 60 (2020) 792–798. X.B. Shi, W. Yan, Z.G. Yang, Y. Ren, Y.Y. Shan, K. Yang, ISIJ Int. 60 (2020) 792–798.
[13]
[14]
Zurück zum Zitat C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, Y.B. Chen, Mater. Sci. Eng. A 731 (2018) 173–183.CrossRef C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, Y.B. Chen, Mater. Sci. Eng. A 731 (2018) 173–183.CrossRef
[15]
Zurück zum Zitat X.Y. Zhang, H.L. Gao, X.Q. Zhang, Y. Yang, Mater. Sci. Eng. A 531 (2012) 84–90.CrossRef X.Y. Zhang, H.L. Gao, X.Q. Zhang, Y. Yang, Mater. Sci. Eng. A 531 (2012) 84–90.CrossRef
[16]
[17]
Zurück zum Zitat Q.L. Yong, Secondary phases in steels, Metallurgical Industry Press, Beijing, China, 2006. Q.L. Yong, Secondary phases in steels, Metallurgical Industry Press, Beijing, China, 2006.
[18]
Zurück zum Zitat T. Hüper, S. Endo, N. Ishikawa, K. Osawa, ISIJ Int. 39 (1999) 288–294.CrossRef T. Hüper, S. Endo, N. Ishikawa, K. Osawa, ISIJ Int. 39 (1999) 288–294.CrossRef
[19]
Zurück zum Zitat N. Ishikawa, N. Shikanai, J. Kondo, JFE Tech. Rep. 12 (2008) 15–19. N. Ishikawa, N. Shikanai, J. Kondo, JFE Tech. Rep. 12 (2008) 15–19.
[20]
Zurück zum Zitat M. Okatsu, N. Shikanai, J. Kondo, JFE Tech. Rep. 12 (2008) 8–14. M. Okatsu, N. Shikanai, J. Kondo, JFE Tech. Rep. 12 (2008) 8–14.
[21]
Zurück zum Zitat R.T. Li, X.R. Zuo, Y.Y. Hu, Z.W. Wang, D.X. Hu, Mater. Charact. 62 (2011) 801–806.CrossRef R.T. Li, X.R. Zuo, Y.Y. Hu, Z.W. Wang, D.X. Hu, Mater. Charact. 62 (2011) 801–806.CrossRef
[22]
Zurück zum Zitat X.B. Shi, W. Yan, W. Wang, L.Y. Zhao, Y.Y. Shan, K. Yang, J. Iron Steel Res. Int. 22 (2015) 937–942.CrossRef X.B. Shi, W. Yan, W. Wang, L.Y. Zhao, Y.Y. Shan, K. Yang, J. Iron Steel Res. Int. 22 (2015) 937–942.CrossRef
[23]
Zurück zum Zitat Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim, ISIJ Int. 42 (2002) 1571–1577.CrossRef Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim, ISIJ Int. 42 (2002) 1571–1577.CrossRef
[24]
Zurück zum Zitat R.M. Alé, J.M.A. Rebello, J. Charlier, Mater. Charact. 37 (1996) 89–93.CrossRef R.M. Alé, J.M.A. Rebello, J. Charlier, Mater. Charact. 37 (1996) 89–93.CrossRef
[25]
Zurück zum Zitat J.H. Hollomon, Trans. ASM 32 (1944) 123–133. J.H. Hollomon, Trans. ASM 32 (1944) 123–133.
[26]
[27]
Zurück zum Zitat L.K. Ji, H.L. Li, H.T. Wang, J.M. Zhang, W.Z. Zhao, H.Y. Chen, Y. Li, Q. Chi, J. Mater. Eng. Perform. 23 (2014) 3867–3874.CrossRef L.K. Ji, H.L. Li, H.T. Wang, J.M. Zhang, W.Z. Zhao, H.Y. Chen, Y. Li, Q. Chi, J. Mater. Eng. Perform. 23 (2014) 3867–3874.CrossRef
[28]
[29]
[30]
Zurück zum Zitat F. Xiao, B. Liao, D.L. Ren, Y.Y. Shan, K. Yang, Mater. Charact. 54 (2005) 305–314.CrossRef F. Xiao, B. Liao, D.L. Ren, Y.Y. Shan, K. Yang, Mater. Charact. 54 (2005) 305–314.CrossRef
Metadaten
Titel
Strength, strain capacity and toughness of five dual-phase pipeline steels
verfasst von
Yi Ren
Xian-bo Shi
Zhen-guo Yang
Yi-yin Shan
Wei Ye
Gui-xi Cai
Ke Yang
Publikationsdatum
16.01.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 6/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00522-w

Weitere Artikel der Ausgabe 6/2021

Journal of Iron and Steel Research International 6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.