Skip to main content
Erschienen in: Journal of Iron and Steel Research International 4/2021

12.11.2020 | Original Paper

Strengthening and toughening mechanism of a Cu-bearing high-strength low-alloy steel with refined tempered martensite/bainite (M/B) matrix and minor inter-critical ferrite

verfasst von: Fei Zhu, Feng Chai, Xiao-bing Luo, Zheng-yan Zhang, Cai-fu Yang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 4/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructure–mechanical property relationship of a Cu-bearing low-carbon high-strength low-alloy steel, subjected to a novel multistage heat treatment including quenching (Q), lamellarization (L) and tempering (T), is presented. Yield strength of 989.5 MPa and average toughness at − 80 °C of 41 J were obtained in this steel after quenching and tempering (QT) heat treatments. Specimen QLT gained a little lower yield strength (982.5 MPa), but greatly enhanced average toughness at − 80 °C (137 J). To further clarify the strengthening and toughening mechanisms in specimen QLT, parameters of microstructural characteristic and crack propagation process were compared and analyzed for specimens Q, QL, QT and QLT. The microstructure of tempered martensite/bainite (M/B) in specimen QT changed to refined tempered M/B matrix mixed with minor IF (inter-critical ferrite) in specimen QLT. Cu-rich precipitates existed in tempered M/B for both specimens QT and QLT, as well as in IF. Compared with QT, adding a lamellarization step before tempering made the effective grains of specimen QLT refined and also led to coarser Cu-rich precipitates in tempered M/B matrix. The weaker strengthening effect of coarser Cu-rich precipitates should be a key reason for the slightly lower yield strength in specimen QLT than in specimen QT. No austenite was found in all specimens Q, QL, QT and QLT. Specimen QLT showed purely ductile fracture mode at − 80 °C due to the refined effective grains. The greatly improved toughness is mainly attributed to the enhanced energy of crack propagation. The combination of refined microstructure, softened matrix and deformation of minor ‘soft’ IF during crack propagation led to the most superior toughness of specimen QLT among all specimens.
Literatur
[1]
Zurück zum Zitat E.J. Czyryca, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Montemarano, J.P. Gudas, Nav. Eng. J. 102 (1990) 63–82.CrossRef E.J. Czyryca, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Montemarano, J.P. Gudas, Nav. Eng. J. 102 (1990) 63–82.CrossRef
[2]
Zurück zum Zitat M.E. Fine, S. Vaynman, D. Isheim, Y.W. Chung, S.P. Bhat, C.H. Hahin, Metall. Mater. Trans. A 41 (2010) 3318–3325.CrossRef M.E. Fine, S. Vaynman, D. Isheim, Y.W. Chung, S.P. Bhat, C.H. Hahin, Metall. Mater. Trans. A 41 (2010) 3318–3325.CrossRef
[3]
Zurück zum Zitat M. Mujahid, A.K. Lis, C.I. Garcia, A.J. Deardo, J. Mater. Eng. Perform. 7 (1998) 247–257.CrossRef M. Mujahid, A.K. Lis, C.I. Garcia, A.J. Deardo, J. Mater. Eng. Perform. 7 (1998) 247–257.CrossRef
[4]
Zurück zum Zitat S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, M.E. Fine, Metall. Mater. Trans. A 39 (2008) 363–373.CrossRef S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, M.E. Fine, Metall. Mater. Trans. A 39 (2008) 363–373.CrossRef
[6]
Zurück zum Zitat H. Su, X.B. Luo, C.F. Yang, F. Chai, H. Li, J. Iron Steel Res. Int. 21 (2014) 619–624.CrossRef H. Su, X.B. Luo, C.F. Yang, F. Chai, H. Li, J. Iron Steel Res. Int. 21 (2014) 619–624.CrossRef
[7]
Zurück zum Zitat M. Mujahid, A.K. Lis, C. Garcia, A. Deardo, Key Eng. Mater. 84 (1993) 209–236.CrossRef M. Mujahid, A.K. Lis, C. Garcia, A. Deardo, Key Eng. Mater. 84 (1993) 209–236.CrossRef
[8]
[9]
Zurück zum Zitat J. Takahashi, K. Kawakami, Y. Kobayashi, Mater. Sci. Eng. A 535 (2012) 144–152.CrossRef J. Takahashi, K. Kawakami, Y. Kobayashi, Mater. Sci. Eng. A 535 (2012) 144–152.CrossRef
[11]
Zurück zum Zitat Z. Li, F. Chai, C. Yang, L. Yang, Mater. Sci. Eng. A 748 (2019) 128–136.CrossRef Z. Li, F. Chai, C. Yang, L. Yang, Mater. Sci. Eng. A 748 (2019) 128–136.CrossRef
[12]
Zurück zum Zitat G.C. Hwang, S. Lee, J.Y. Yoo, W.Y. Choo, Mater. Sci. Eng. A 252 (1998) 256–268.CrossRef G.C. Hwang, S. Lee, J.Y. Yoo, W.Y. Choo, Mater. Sci. Eng. A 252 (1998) 256–268.CrossRef
[13]
Zurück zum Zitat D. Jain, D. Isheim, A.H. Hunter, D.N. Seidman, Metall. Mater. Trans. A 47 (2016) 1–13.CrossRef D. Jain, D. Isheim, A.H. Hunter, D.N. Seidman, Metall. Mater. Trans. A 47 (2016) 1–13.CrossRef
[14]
Zurück zum Zitat Q. Liu, H. Wen, Z. Han, J. Gu, C. Li, E.J. Lavernia, Metall. Mater. Trans. A 47 (2016) 1960–1974.CrossRef Q. Liu, H. Wen, Z. Han, J. Gu, C. Li, E.J. Lavernia, Metall. Mater. Trans. A 47 (2016) 1960–1974.CrossRef
[15]
[16]
Zurück zum Zitat X.X. Dong, Y.F. Shen, T.W. Yin, R.D.K. Misra, G. Lin, Mater. Sci. Eng. A 759 (2019) 725–735.CrossRef X.X. Dong, Y.F. Shen, T.W. Yin, R.D.K. Misra, G. Lin, Mater. Sci. Eng. A 759 (2019) 725–735.CrossRef
[17]
[18]
[19]
[20]
[21]
Zurück zum Zitat H.K. Sung, Y.S. Sang, B. Hwang, G.L. Chang, N.J. Kim, S. Lee, Metall. Mater. Trans. A 42 (2011) 1827–1835.CrossRef H.K. Sung, Y.S. Sang, B. Hwang, G.L. Chang, N.J. Kim, S. Lee, Metall. Mater. Trans. A 42 (2011) 1827–1835.CrossRef
[22]
Zurück zum Zitat S.Y. Han, Y.S. Shin, S. Lee, N.J. Kim, J.H. Bae, K. Kim, Metall. Mater. Trans. A 41 (2010) 329–340.CrossRef S.Y. Han, Y.S. Shin, S. Lee, N.J. Kim, J.H. Bae, K. Kim, Metall. Mater. Trans. A 41 (2010) 329–340.CrossRef
[23]
Zurück zum Zitat D.S. Liu, B.G. Cheng, Y.Y. Chen, Metall. Mater. Trans. A 44 (2013) 440–455.CrossRef D.S. Liu, B.G. Cheng, Y.Y. Chen, Metall. Mater. Trans. A 44 (2013) 440–455.CrossRef
[24]
Zurück zum Zitat D. Liu, B. Cheng, M. Luo, Acta Metall. Sin. 47 (2011) 1233–1240. D. Liu, B. Cheng, M. Luo, Acta Metall. Sin. 47 (2011) 1233–1240.
[25]
[26]
Zurück zum Zitat B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59 (2011) 5845–5858.CrossRef B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59 (2011) 5845–5858.CrossRef
[27]
Zurück zum Zitat Y.N. Yu, Metallurgical principle, 2nd ed., Metallurgical Industry Press, Beijing, China, 2013. Y.N. Yu, Metallurgical principle, 2nd ed., Metallurgical Industry Press, Beijing, China, 2013.
[28]
Zurück zum Zitat C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, Scripta Mater. 58 (2008) 492–495.CrossRef C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, Scripta Mater. 58 (2008) 492–495.CrossRef
[30]
[31]
Zurück zum Zitat Q.L. Yong, Second phases in structural steels, Metallurgical Industry Press, Beijing, China, 2006. Q.L. Yong, Second phases in structural steels, Metallurgical Industry Press, Beijing, China, 2006.
[32]
Zurück zum Zitat A.S. Kao, H.A. Kuhn, O. Richmond, W.A. Spitzig, J. Mater. Res. 5 (1990) 83–91.CrossRef A.S. Kao, H.A. Kuhn, O. Richmond, W.A. Spitzig, J. Mater. Res. 5 (1990) 83–91.CrossRef
[33]
Zurück zum Zitat B. Jiang, M. Wu, M. Zhang, F. Zhao, Z. Zhao, Y. Liu, Mater. Sci. Eng. A 707 (2017) 306–314.CrossRef B. Jiang, M. Wu, M. Zhang, F. Zhao, Z. Zhao, Y. Liu, Mater. Sci. Eng. A 707 (2017) 306–314.CrossRef
[34]
Zurück zum Zitat A. Saastamoinen, A. Kaijalainen, D. Porter, P. Suikkanen, J.R. Yang, Y.T. Tsai, Mater. Charact. 139 (2018) 1–10.CrossRef A. Saastamoinen, A. Kaijalainen, D. Porter, P. Suikkanen, J.R. Yang, Y.T. Tsai, Mater. Charact. 139 (2018) 1–10.CrossRef
[35]
Zurück zum Zitat K. Nakashima, Y. Futamura, T. Tsuchiyama, S. Takaki, ISIJ Int. 42 (2002) 1541–1545.CrossRef K. Nakashima, Y. Futamura, T. Tsuchiyama, S. Takaki, ISIJ Int. 42 (2002) 1541–1545.CrossRef
[36]
Zurück zum Zitat G. Han, Z.J. Xie, L. Xiong, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 705 (2017) 89–97.CrossRef G. Han, Z.J. Xie, L. Xiong, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 705 (2017) 89–97.CrossRef
[37]
Zurück zum Zitat Z.Y. Zhang, F. Chai, X.B. Luo, G. Chen, C.F. Yang, H. Su, Acta Metall. Sin. 55 (2019) 783–791. Z.Y. Zhang, F. Chai, X.B. Luo, G. Chen, C.F. Yang, H. Su, Acta Metall. Sin. 55 (2019) 783–791.
[38]
Zurück zum Zitat M.H.K. Sanij, S.S.G. Banadkouki, A. Mashreghi, M. Moshrefifar, Mater. Des. 42 (2012) 339–346.CrossRef M.H.K. Sanij, S.S.G. Banadkouki, A. Mashreghi, M. Moshrefifar, Mater. Des. 42 (2012) 339–346.CrossRef
[39]
[40]
Metadaten
Titel
Strengthening and toughening mechanism of a Cu-bearing high-strength low-alloy steel with refined tempered martensite/bainite (M/B) matrix and minor inter-critical ferrite
verfasst von
Fei Zhu
Feng Chai
Xiao-bing Luo
Zheng-yan Zhang
Cai-fu Yang
Publikationsdatum
12.11.2020
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 4/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00500-2

Weitere Artikel der Ausgabe 4/2021

Journal of Iron and Steel Research International 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.