Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2016

06.10.2015 | RESEARCH PAPER

Stress-based design of thermal structures via topology optimization

verfasst von: Joshua D. Deaton, Ramana V. Grandhi

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The design of thermal structures in the aerospace industry, including exhaust structures on embedded engine aircraft and hypersonic thermal protection systems, poses a number of complex design challenges. These challenges are particularly well addressed by the material layout capabilities of structural topology optimization; however, no topology optimization methods are readily available with the necessary thermoelastic considerations for these problems. This is due in large part to the emphasis on cases of maximum stiffness design for structures subjected to externally applied mechanical loads in the majority of topology optimization applications. In addition, while limited work in the literature has investigated thermoelastic topology optimization, a direct treatment of thermal stresses is not well documented. Such a treatment is critical in the design of thermal structures where excessive thermal stresses are a primary failure mode. In this paper, we present a method for the topology optimization of structures with combined mechanical and thermoelastic (temperature) loads that are subject to stress constraints. We present the necessary steps needed to address both the design-dependent thermal loads and accommodate the challenges of stress-based design criteria. A relaxation technique is utilized to remove the singularity phenomenon in stresses and the large number of stress constraints is handled using a scaled aggregation technique that has been shown previously to satisfy prescribed stress limits in mechanical problems. Finally, the stress-based thermoelastic formulation is applied to two numerical example problems to demonstrate its effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology Optimization: Theory, Methods and Applicationsr, 2nd. Springer Bendsøe MP, Sigmund O (2003) Topology Optimization: Theory, Methods and Applicationsr, 2nd. Springer
Zurück zum Zitat Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141CrossRefMathSciNetMATH Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141CrossRefMathSciNetMATH
Zurück zum Zitat Bruggi M, Venini P (2008) A mixed FEM approach to stress-constrained topology optimization. Int J Numer Methods Eng 73(12):1693–1714CrossRefMathSciNetMATH Bruggi M, Venini P (2008) A mixed FEM approach to stress-constrained topology optimization. Int J Numer Methods Eng 73(12):1693–1714CrossRefMathSciNetMATH
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459CrossRefMATH
Zurück zum Zitat Deaton JD, Grandhi RV (2013) Stiffening of restrained thermal structures via topology optimization. Struct Multidiscip Optim 48(4):731–745CrossRef Deaton JD, Grandhi RV (2013) Stiffening of restrained thermal structures via topology optimization. Struct Multidiscip Optim 48(4):731–745CrossRef
Zurück zum Zitat Deaton JD, Grandhi RV (2014b) Significance of Geometric Nonlinearity in the Design of Thermally Loaded Structures. AIAA Journal of Aircraft Deaton JD, Grandhi RV (2014b) Significance of Geometric Nonlinearity in the Design of Thermally Loaded Structures. AIAA Journal of Aircraft
Zurück zum Zitat Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478CrossRefMATH Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478CrossRefMATH
Zurück zum Zitat Guilherme CEM, Fonseca JSO (2007) Topology optimization of continuum structures with epsilon-relaxed stress constraints. In: Alves M, Da Costa Mattos H (eds) International Symposium on Solid Mechanics, Mechanics of Solids in Brazil, vol 1, Brazilian Society of Mechanical Sciences in Engineering, pp 239–250 Guilherme CEM, Fonseca JSO (2007) Topology optimization of continuum structures with epsilon-relaxed stress constraints. In: Alves M, Da Costa Mattos H (eds) International Symposium on Solid Mechanics, Mechanics of Solids in Brazil, vol 1, Brazilian Society of Mechanical Sciences in Engineering, pp 239–250
Zurück zum Zitat Haney MA, Grandhi RV (2009) Consequences of material addition for a beam strip in a thermal environment. AIAA J 47(4):1026–1034CrossRef Haney MA, Grandhi RV (2009) Consequences of material addition for a beam strip in a thermal environment. AIAA J 47(4):1026–1034CrossRef
Zurück zum Zitat Jog C (1996) Distributed-parameter optimization and topology design for non-linear thermoelasticity. Comput Methods Appl Mech Eng 132(1-2):117–134CrossRefMathSciNetMATH Jog C (1996) Distributed-parameter optimization and topology design for non-linear thermoelasticity. Comput Methods Appl Mech Eng 132(1-2):117–134CrossRefMathSciNetMATH
Zurück zum Zitat Kim WY, Grandhi RV, Haney MA (2006) Multiobjective Evolutionary Structural Optimization Using Combined Static/Dynamic Control Parameters. AIAA J 44(4):794–802CrossRef Kim WY, Grandhi RV, Haney MA (2006) Multiobjective Evolutionary Structural Optimization Using Combined Static/Dynamic Control Parameters. AIAA J 44(4):794–802CrossRef
Zurück zum Zitat Le C, Norato J, Bruns TE, Ha C, Tortorelli DA (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620CrossRef Le C, Norato J, Bruns TE, Ha C, Tortorelli DA (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620CrossRef
Zurück zum Zitat Lee E, James KA, Martins JRRA (2012) Stress-constrained topology optimization with design-dependent loading. Struct Multidiscip Optim 46(5):647–661CrossRefMathSciNetMATH Lee E, James KA, Martins JRRA (2012) Stress-constrained topology optimization with design-dependent loading. Struct Multidiscip Optim 46(5):647–661CrossRefMathSciNetMATH
Zurück zum Zitat Li Q, Steven GP, Xie Y (1999) Displacement minimization of thermoelastic structures by evolutionary thickness design. Comput Methods Appl Mech Eng 179(3-4):361–378CrossRefMATH Li Q, Steven GP, Xie Y (1999) Displacement minimization of thermoelastic structures by evolutionary thickness design. Comput Methods Appl Mech Eng 179(3-4):361–378CrossRefMATH
Zurück zum Zitat Li Q, Steven GP, Xie YM (2001) Thermoelastic Topology Optimization for Problems with Varying Temperature Fields. J Therm Stresses 24(4):347–366CrossRef Li Q, Steven GP, Xie YM (2001) Thermoelastic Topology Optimization for Problems with Varying Temperature Fields. J Therm Stresses 24(4):347–366CrossRef
Zurück zum Zitat MathWorks (2012) Matlab release (2012b) Tech. MA, Natick MathWorks (2012) Matlab release (2012b) Tech. MA, Natick
Zurück zum Zitat MIL-HDBK-5H (1998) Metallic Materials and Elements for Aerospace Vehicle Structures. Tech. Rep. MIL-HDBK-5H, U.S. Department of Defense MIL-HDBK-5H (1998) Metallic Materials and Elements for Aerospace Vehicle Structures. Tech. Rep. MIL-HDBK-5H, U.S. Department of Defense
Zurück zum Zitat París J, Navarrina F, Colominas I, Casteleiro M (2010a) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441CrossRefMATH París J, Navarrina F, Colominas I, Casteleiro M (2010a) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441CrossRefMATH
Zurück zum Zitat París J, Navarrina F, Colominas I, Casteleiro M (2010b) Improvements in the treatment of stress constraints in structural topology optimization problems. J Comput Appl Math 234(7):2231–2238CrossRefMathSciNetMATH París J, Navarrina F, Colominas I, Casteleiro M (2010b) Improvements in the treatment of stress constraints in structural topology optimization problems. J Comput Appl Math 234(7):2231–2238CrossRefMathSciNetMATH
Zurück zum Zitat Pedersen P, Pedersen NL (2010) Strength optimized designs of thermoelastic structures. Struct Multidiscip Optim 42(5):681–691CrossRef Pedersen P, Pedersen NL (2010) Strength optimized designs of thermoelastic structures. Struct Multidiscip Optim 42(5):681–691CrossRef
Zurück zum Zitat Pedersen P, Pedersen NL (2012) Interpolation/penalization applied for strength design of 3D thermoelastic structures. Struct Multidiscip Optim 42(6):773–786CrossRef Pedersen P, Pedersen NL (2012) Interpolation/penalization applied for strength design of 3D thermoelastic structures. Struct Multidiscip Optim 42(6):773–786CrossRef
Zurück zum Zitat Penmetsa RC, Grandhi RV, Haney M (2006) Topology Optimization for an Evolutionary Design of a Thermal Protection System. AIAA J 44:2663–2671CrossRef Penmetsa RC, Grandhi RV, Haney M (2006) Topology Optimization for an Evolutionary Design of a Thermal Protection System. AIAA J 44:2663–2671CrossRef
Zurück zum Zitat Pereira J, Fancello E, Barcellos C (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscip Optim 26(1-2):50–66CrossRefMathSciNetMATH Pereira J, Fancello E, Barcellos C (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscip Optim 26(1-2):50–66CrossRefMathSciNetMATH
Zurück zum Zitat Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38(12):1951–1965CrossRefMathSciNetMATH Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38(12):1951–1965CrossRefMathSciNetMATH
Zurück zum Zitat Sigmund O (2001a) Design of multiphysics actuators using topology optimization - Part I: One-material structures. Comput Methods Appl Mech Eng 190(49-50):6577–6604CrossRefMATH Sigmund O (2001a) Design of multiphysics actuators using topology optimization - Part I: One-material structures. Comput Methods Appl Mech Eng 190(49-50):6577–6604CrossRefMATH
Zurück zum Zitat Sigmund O (2001b) Design of multiphysics actuators using topology optimization - Part II: Two-material structures. Comput Methods Appl Mech Eng 190(49-50):6605–6627CrossRef Sigmund O (2001b) Design of multiphysics actuators using topology optimization - Part II: Two-material structures. Comput Methods Appl Mech Eng 190(49-50):6605–6627CrossRef
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies, and local minima. Struct Multidiscip Optim 16(1):68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies, and local minima. Struct Multidiscip Optim 16(1):68–75CrossRef
Zurück zum Zitat Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids 45(6):1037– 1067CrossRefMathSciNet Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids 45(6):1037– 1067CrossRefMathSciNet
Zurück zum Zitat Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573CrossRefMathSciNetMATH Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573CrossRefMathSciNetMATH
Zurück zum Zitat Wang B, Yan J, Cheng G (2011) Optimal structure design with low thermal directional expansion and high stiffness. Eng Optim 43(6):581–595CrossRef Wang B, Yan J, Cheng G (2011) Optimal structure design with low thermal directional expansion and high stiffness. Eng Optim 43(6):581–595CrossRef
Zurück zum Zitat Yan J, Cheng G, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidiscip Des Optim 2:259–266CrossRef Yan J, Cheng G, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidiscip Des Optim 2:259–266CrossRef
Metadaten
Titel
Stress-based design of thermal structures via topology optimization
verfasst von
Joshua D. Deaton
Ramana V. Grandhi
Publikationsdatum
06.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2016
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1331-z

Weitere Artikel der Ausgabe 2/2016

Structural and Multidisciplinary Optimization 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.