Skip to main content
Erschienen in: Acta Mechanica 7/2020

15.04.2020 | Original Paper

Stress induced by diffusion and local chemical reaction in spherical composition-gradient electrodes

verfasst von: Hai Hu, Pengfei Yu, Yaohong Suo

Erschienen in: Acta Mechanica | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Composition-gradient electrodes with their excellent electrochemical performance and mechanical durability are superior to homogeneous ones. In this work, taking into account the local solid reaction and composition-gradient electrode, a generalized diffusion–deformation–reaction model with E, D, and \(\Omega \)-dependent r under potentiostatic operation is developed. Then, some numerical simulations are performed to obtain the evolutions of concentration, radial stress, and tangential stress. The influences of Thiele number and reaction order on the concentration and stresses are also discussed. Finally, some comparisons between composition-gradient electrodes and homogeneous ones are made to show that the composition-gradient electrode is more helpful to improve the mechanical durability of Li-ion batteries than the homogeneous one.
Literatur
1.
Zurück zum Zitat Li, H.: Fundamental scientific aspects of lithium batteries (XV)-summary and outlook. Energy Storage Sci. Technol. 4(3), 306–318 (2015) Li, H.: Fundamental scientific aspects of lithium batteries (XV)-summary and outlook. Energy Storage Sci. Technol. 4(3), 306–318 (2015)
2.
Zurück zum Zitat Yang, Y.: Solid State Electrochemistry, pp. 1–6. Chemical Industry Press, Beijing (2016). 8 Yang, Y.: Solid State Electrochemistry, pp. 1–6. Chemical Industry Press, Beijing (2016). 8
3.
Zurück zum Zitat Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRef Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRef
4.
Zurück zum Zitat Deshpande, R., Qi, Y., Cheng, Y.T.: Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157(8), A967–A971 (2010)CrossRef Deshpande, R., Qi, Y., Cheng, Y.T.: Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157(8), A967–A971 (2010)CrossRef
5.
Zurück zum Zitat Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32(10), 1876–1881 (1961)CrossRef Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32(10), 1876–1881 (1961)CrossRef
6.
Zurück zum Zitat Lee, S., Chen, J.R., Wang, W.L.: Diffusion-induced stresses in a hollow cylinder: constant surface stresses. Mater. Chem. Phys. 64(2), 123–130 (2000)CrossRef Lee, S., Chen, J.R., Wang, W.L.: Diffusion-induced stresses in a hollow cylinder: constant surface stresses. Mater. Chem. Phys. 64(2), 123–130 (2000)CrossRef
7.
Zurück zum Zitat Lee, S., Li, J.C.M.: Dislocation-free diffusion processes. J. Appl. Phys. 52(3), 1336–1346 (1981)CrossRef Lee, S., Li, J.C.M.: Dislocation-free diffusion processes. J. Appl. Phys. 52(3), 1336–1346 (1981)CrossRef
8.
Zurück zum Zitat Cheng, Y.T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190(2), 453–460 (2009)CrossRef Cheng, Y.T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190(2), 453–460 (2009)CrossRef
9.
Zurück zum Zitat Cheng, Y.T., Verbrugge, M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157(4), A508–A516 (2010)CrossRef Cheng, Y.T., Verbrugge, M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157(4), A508–A516 (2010)CrossRef
10.
Zurück zum Zitat Hao, F., Fang, D.N.: Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J. Electrochem. Soc. 160(4), A595–A600 (2013)CrossRef Hao, F., Fang, D.N.: Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J. Electrochem. Soc. 160(4), A595–A600 (2013)CrossRef
11.
Zurück zum Zitat Wang, C.P., Ma, Z.S., Wang, Y., Lu, C.S.: Failure prediction of high-capacity electrode materials in lithium-ion batteries. J. Electrochem. Soc. 163(7), A1157–A1163 (2016)CrossRef Wang, C.P., Ma, Z.S., Wang, Y., Lu, C.S.: Failure prediction of high-capacity electrode materials in lithium-ion batteries. J. Electrochem. Soc. 163(7), A1157–A1163 (2016)CrossRef
12.
Zurück zum Zitat Peng, Y.Z., Zhang, K., Zheng, B.L., Li, Y.: Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition. Acta Phys. Sin. 65(10), 100201(8 pages) (2016) Peng, Y.Z., Zhang, K., Zheng, B.L., Li, Y.: Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition. Acta Phys. Sin. 65(10), 100201(8 pages) (2016)
13.
Zurück zum Zitat Zhang, K., Li, Y., Zheng, B.L.: Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes. J. Appl. Phys. 118(10), 105102 (2015). (8 pages)CrossRef Zhang, K., Li, Y., Zheng, B.L.: Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes. J. Appl. Phys. 118(10), 105102 (2015). (8 pages)CrossRef
14.
Zurück zum Zitat Yang, F.Q.: Effect of local solid reaction on diffusion-induced stress. J. Appl. Phys. 107(10), 103516 (2010). (7 pages)CrossRef Yang, F.Q.: Effect of local solid reaction on diffusion-induced stress. J. Appl. Phys. 107(10), 103516 (2010). (7 pages)CrossRef
15.
Zurück zum Zitat Zhang, T., Guo, Z.S., Wang, Y.H., Zhu, J.Y.: Effect of reversible electrochemical reaction on Li diffusion and stresses in cylindrical Li-ion battery electrodes. J. Appl. Phys. 115(8), 083504 (2014). (12 pages)CrossRef Zhang, T., Guo, Z.S., Wang, Y.H., Zhu, J.Y.: Effect of reversible electrochemical reaction on Li diffusion and stresses in cylindrical Li-ion battery electrodes. J. Appl. Phys. 115(8), 083504 (2014). (12 pages)CrossRef
16.
Zurück zum Zitat Li, Y., Zhang, K., Zheng, B.L., Zhang, X.Q., Wang, Q.: Effects of reversible chemical reaction on Li diffusion and stresses in spherical composition-gradient electrodes. J. Appl. Phys. 117(24), 245103 (2015). (8 pages)CrossRef Li, Y., Zhang, K., Zheng, B.L., Zhang, X.Q., Wang, Q.: Effects of reversible chemical reaction on Li diffusion and stresses in spherical composition-gradient electrodes. J. Appl. Phys. 117(24), 245103 (2015). (8 pages)CrossRef
17.
Zurück zum Zitat Ji, L., Guo, Z.S., Du, S.Y., Chen, L.: Stress induced by diffusion, curvature, and reversible electrochemical reaction in bilayer lithium-ion battery electrode plates. Int. J. Mech. Sci. 134, 599–609 (2017)CrossRef Ji, L., Guo, Z.S., Du, S.Y., Chen, L.: Stress induced by diffusion, curvature, and reversible electrochemical reaction in bilayer lithium-ion battery electrode plates. Int. J. Mech. Sci. 134, 599–609 (2017)CrossRef
18.
Zurück zum Zitat Suo, Y.H., Yang, F.Q.: Transient analysis of diffusion-induced stress: effect of solid reaction. Acta Mech. 230(3), 993–1002 (2019)CrossRef Suo, Y.H., Yang, F.Q.: Transient analysis of diffusion-induced stress: effect of solid reaction. Acta Mech. 230(3), 993–1002 (2019)CrossRef
19.
Zurück zum Zitat Ju, J.W., Lee, E.J., Yoon, C.S., Myung, S.T., Sun, Y.K.: Optimization of layered cathode material with full concentration gradient for lithium-ion batteries. J. Phys. Chem. C 118(1), 175–182 (2014)CrossRef Ju, J.W., Lee, E.J., Yoon, C.S., Myung, S.T., Sun, Y.K.: Optimization of layered cathode material with full concentration gradient for lithium-ion batteries. J. Phys. Chem. C 118(1), 175–182 (2014)CrossRef
20.
Zurück zum Zitat Li, Y., Zhang, K., Zheng, B.L.: Stress analysis in spherical composition-gradient electrodes of lithium-ion battery. J. Electrochem. Soc. 162, A223–A228 (2015)CrossRef Li, Y., Zhang, K., Zheng, B.L.: Stress analysis in spherical composition-gradient electrodes of lithium-ion battery. J. Electrochem. Soc. 162, A223–A228 (2015)CrossRef
21.
Zurück zum Zitat Yang, F.Q.: Interaction between diffusion and chemical stresses. Mater. Sci. Eng. A409(1–2), 153–159 (2005)CrossRef Yang, F.Q.: Interaction between diffusion and chemical stresses. Mater. Sci. Eng. A409(1–2), 153–159 (2005)CrossRef
22.
Zurück zum Zitat Ko, S.C., Lee, S.B., Chou, Y.T.: Chemical stresses in a square sandwich composite. Mater. Sci. Eng. A409(1–2), 145–152 (2005)CrossRef Ko, S.C., Lee, S.B., Chou, Y.T.: Chemical stresses in a square sandwich composite. Mater. Sci. Eng. A409(1–2), 145–152 (2005)CrossRef
23.
Zurück zum Zitat Li, J.C.M.: Physical chemistry of some microstructural phenomena. Metall. Mater. Trans. A 9(10), 1353–1380 (1978)CrossRef Li, J.C.M.: Physical chemistry of some microstructural phenomena. Metall. Mater. Trans. A 9(10), 1353–1380 (1978)CrossRef
24.
Zurück zum Zitat Li, J.C.M.: Chemical potential for diffusion in a stressed solid. Scr. Metall. 15(1), 21–28 (1981)CrossRef Li, J.C.M.: Chemical potential for diffusion in a stressed solid. Scr. Metall. 15(1), 21–28 (1981)CrossRef
25.
Zurück zum Zitat Ottengraf, S.P.P., Van Den Oever, A.H.C.: Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol. Bioeng. 25(12), 3089–3102 (1983)CrossRef Ottengraf, S.P.P., Van Den Oever, A.H.C.: Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol. Bioeng. 25(12), 3089–3102 (1983)CrossRef
26.
Zurück zum Zitat Bhandakkar, T.K., Gao, H.J.: Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: implications on the critical size for flaw tolerant battery electrodes. Int. J. Solids Struct. 47(10), 1424–1434 (2010)CrossRef Bhandakkar, T.K., Gao, H.J.: Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: implications on the critical size for flaw tolerant battery electrodes. Int. J. Solids Struct. 47(10), 1424–1434 (2010)CrossRef
27.
Zurück zum Zitat Zhao, K.J., Pharr, M., Vlassak, J.J., Suo, Z.G.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108(4), 073517 (2010). (6 pages)CrossRef Zhao, K.J., Pharr, M., Vlassak, J.J., Suo, Z.G.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108(4), 073517 (2010). (6 pages)CrossRef
Metadaten
Titel
Stress induced by diffusion and local chemical reaction in spherical composition-gradient electrodes
verfasst von
Hai Hu
Pengfei Yu
Yaohong Suo
Publikationsdatum
15.04.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 7/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02652-4

Weitere Artikel der Ausgabe 7/2020

Acta Mechanica 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.