Skip to main content

2016 | OriginalPaper | Buchkapitel

Stress-Relief Cracking in Simulated-Coarse-Grained Heat Affected Zone of a Creep-Resistant Steel

verfasst von : Katherine Strader, Boian T. Alexandrov, John C. Lippold

Erschienen in: Cracking Phenomena in Welds IV

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cracking has been reported in newly constructed water wall panels of fossil power plants during startup testing. Both high hardness (exceeding 350 HV) and high level of welding residual stress have been reported in welds of waterwall panels made of T23 and T24 steels. Stress-relief cracking (SRC) is being considered as a possible failure mechanism during high temperature exposure such as PWHT. High temperature exposure of non PWHT-ed welds of Grade T23 and T24 steels leads to hardening in the weld and coarse-grained heat-affected zone (CGHAZ). It has been suggested that such a hardening mechanism can lead to stress-relief cracking (SRC). The objective of this study is to evaluate the susceptibility to SRC in the coarse grained heat affected zone (CGHAZ) of Grade T24 steel utilizing a Gleeble-based SRC test developed at The Ohio State University. The strain-age cracking test developed at The Ohio State University was modified in order to better replicate the conditions of PWHT in highly restrained welds and quantify the stress-relief cracking susceptibility in creep resistant steels. In addition to reduction in area and time to failure, the modified test allows quantification of the stress and strain that cause failure during SRC testing. This test utilizes the Gleeble® 3800 thermo-mechanical simulator. SRC testing of simulated-CGHAZ in Grade T24 Steel has revealed ductile failure for the sample tested at 600 °C, predominantly intergranular with ductile features for the sample tested at 650 °C, and brittle intergranular failures for the samples tested at temperatures of 675 °C and above. For PWHT above 600 °C at residual stress levels close to the yield stress, the CGHAZ in Grade T24 steel welds may be susceptible to SRC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. B. Kitto and S. C. Stultz, Steam/its generation and use. 41st edition., Barberton, Ohio: The Babcock & Wilcox Company, 2005. J. B. Kitto and S. C. Stultz, Steam/its generation and use. 41st edition., Barberton, Ohio: The Babcock & Wilcox Company, 2005.
2.
Zurück zum Zitat S. A. David, J. A. Siefert and Z. Feng, “Welding and Weldability of Candidate Ferritic Alloys for Future Advanced Ultrasupercritical Fossil Power Plants,” Science and Technology of Welding and Joining, vol. 18, no. 8, pp. 631-651, 2013. S. A. David, J. A. Siefert and Z. Feng, “Welding and Weldability of Candidate Ferritic Alloys for Future Advanced Ultrasupercritical Fossil Power Plants,” Science and Technology of Welding and Joining, vol. 18, no. 8, pp. 631-651, 2013.
3.
Zurück zum Zitat P. Nevasmaa, J. Salonen and et. al., “Reheat Cracking Susceptibility of P23 (7CrWVMoNb9-6) Steel Welds Made Using Matching and Mis-Matching Filler Metals,” in 9th Liege Conference on Materials for Advanced Power Engineering, 2010. P. Nevasmaa, J. Salonen and et. al., “Reheat Cracking Susceptibility of P23 (7CrWVMoNb9-6) Steel Welds Made Using Matching and Mis-Matching Filler Metals,” in 9th Liege Conference on Materials for Advanced Power Engineering, 2010.
4.
Zurück zum Zitat Q. Zhao, “High Temperature Corrosion of Water Wall Materials T23 and T24 in Simulated Furnace Atmospheres,” Chinese Journal of Chemical Engineering, vol. 20, no. 4, pp. 814-822, 2012. Q. Zhao, “High Temperature Corrosion of Water Wall Materials T23 and T24 in Simulated Furnace Atmospheres,” Chinese Journal of Chemical Engineering, vol. 20, no. 4, pp. 814-822, 2012.
5.
Zurück zum Zitat J. Arndt, The T23/T24 Book: New Grades for Waterwalls and Superheaters, Vallourec & Mannesmann Tubes, 2nd Edition, 2000. J. Arndt, The T23/T24 Book: New Grades for Waterwalls and Superheaters, Vallourec & Mannesmann Tubes, 2nd Edition, 2000.
6.
Zurück zum Zitat L. Mráz and et. al., “Application of Creep Resistant Steel T24 for welding membrane walls,” IIW. Doc. IX-C-1029-13, 2013. L. Mráz and et. al., “Application of Creep Resistant Steel T24 for welding membrane walls,” IIW. Doc. IX-C-1029-13, 2013.
7.
Zurück zum Zitat “T24 Experience: an Hitachi Power Europe perspective,” Modern Power Systems, October 2012. “T24 Experience: an Hitachi Power Europe perspective,” Modern Power Systems, October 2012.
8.
Zurück zum Zitat C. Ullrich, S. Heckmann, W. Tillmann, T. Bodmer and G. Gierschner, “Stress Corrosion Cracking of T24 - Service Experience and Investigation Program,” in ETD Seminar, London, May 2013. C. Ullrich, S. Heckmann, W. Tillmann, T. Bodmer and G. Gierschner, “Stress Corrosion Cracking of T24 - Service Experience and Investigation Program,” in ETD Seminar, London, May 2013.
9.
Zurück zum Zitat S. Huysmans, F. Vanderlinden and E. De Bruycker, “Weldability Aspects of T24 Boiler Tubing in the context of Stress Corrosion Cracking,” in ETD Seminar, London, May 2013. S. Huysmans, F. Vanderlinden and E. De Bruycker, “Weldability Aspects of T24 Boiler Tubing in the context of Stress Corrosion Cracking,” in ETD Seminar, London, May 2013.
10.
Zurück zum Zitat K. Park, S. Kim, J. Chang and C. Lee, “Post-weld Heat Treatment Cracking Susceptibility of T23 Weld Metals for Fossil Fuel Applications,” Materials and Design, vol. 34, pp. 699–706, 2012. K. Park, S. Kim, J. Chang and C. Lee, “Post-weld Heat Treatment Cracking Susceptibility of T23 Weld Metals for Fossil Fuel Applications,” Materials and Design, vol. 34, pp. 699–706, 2012.
11.
Zurück zum Zitat C. Ullrich, S. Heckmann, W. Tillmann, T. Bodmer and G. Gierschner, “Stress Corrosion Cracking of T24 - Project Achievements and Ongoing Investigations,” in ETD Seminar, London, May 2013. C. Ullrich, S. Heckmann, W. Tillmann, T. Bodmer and G. Gierschner, “Stress Corrosion Cracking of T24 - Project Achievements and Ongoing Investigations,” in ETD Seminar, London, May 2013.
12.
Zurück zum Zitat P. Mohyla and et. al., “Contribution to Research of Weldability of Modern Low-Alloy Creep Resistant Steels,” Acta Metallurgica Slovaca, vol. 9, no. 3, pp. 210-216, 2003. P. Mohyla and et. al., “Contribution to Research of Weldability of Modern Low-Alloy Creep Resistant Steels,” Acta Metallurgica Slovaca, vol. 9, no. 3, pp. 210-216, 2003.
13.
Zurück zum Zitat N. H. Heo, J. C. Chang and S.-J. Kim, “Elevated temperature intergranular cracking in heat-resistant steels,” Materials Science and Engineering A., vol. 559, pp. 665-677, 2013. N. H. Heo, J. C. Chang and S.-J. Kim, “Elevated temperature intergranular cracking in heat-resistant steels,” Materials Science and Engineering A., vol. 559, pp. 665-677, 2013.
14.
Zurück zum Zitat A. Dhooge and A. Vinckier, “Reheat Cracking - A Review of Recent Studies,” International Journal of Pressure Vessels and Piping, vol. 27, pp. 239-269, 1987. A. Dhooge and A. Vinckier, “Reheat Cracking - A Review of Recent Studies,” International Journal of Pressure Vessels and Piping, vol. 27, pp. 239-269, 1987.
15.
Zurück zum Zitat J. G. Nawrocki, “The Mechanism of Stress-Relief Cracking in a Ferritic Alloy Steel,” Welding Journal, vol. 82, no. 2, pp. 25s-35s, Feb 2003. J. G. Nawrocki, “The Mechanism of Stress-Relief Cracking in a Ferritic Alloy Steel,” Welding Journal, vol. 82, no. 2, pp. 25s-35s, Feb 2003.
16.
Zurück zum Zitat A. Dhooge and J. Vekeman, “New Generation 2.25Cr Steels T/P 23 and T/P 24 Weldability and High Temperature Properties,” Welding in the World, vol. 49, pp. 31-49, 2005. A. Dhooge and J. Vekeman, “New Generation 2.25Cr Steels T/P 23 and T/P 24 Weldability and High Temperature Properties,” Welding in the World, vol. 49, pp. 31-49, 2005.
17.
Zurück zum Zitat J. G. Nawrocki, J. N. DuPont, C. V. Robino and A. R. Marder, “The Stress-Relief Cracking Susceptibility of a New Ferritic Steel - Part 1: Single-Pass Heat-Affected Zone Simulations,” Welding Research Supplement, pp. 355s-362s, December 2000. J. G. Nawrocki, J. N. DuPont, C. V. Robino and A. R. Marder, “The Stress-Relief Cracking Susceptibility of a New Ferritic Steel - Part 1: Single-Pass Heat-Affected Zone Simulations,” Welding Research Supplement, pp. 355s-362s, December 2000.
18.
Zurück zum Zitat S. Norton, “Development of a Gleeble Based Test for Postweld Heat Treatment Cracking in Nickel Alloys,” in MS, Thesis, The Ohio State University, 2002. S. Norton, “Development of a Gleeble Based Test for Postweld Heat Treatment Cracking in Nickel Alloys,” in MS, Thesis, The Ohio State University, 2002.
Metadaten
Titel
Stress-Relief Cracking in Simulated-Coarse-Grained Heat Affected Zone of a Creep-Resistant Steel
verfasst von
Katherine Strader
Boian T. Alexandrov
John C. Lippold
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-28434-7_21

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.