Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2018

21.08.2018

Stress Wave and Phase Transformation Propagation at the Atomistic Scale in NiTi Shape Memory Alloys Subjected to Shock Loadings

verfasst von: Fatemeh Yazdandoost, Reza Mirzaeifar

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A unique property of Nickel–Titanium (NiTi) shape memory alloys is their ability to dissipate the shock loading energy by two complementary mechanisms: (a) through deformation-induced phase transformations caused by the structural vibrations, and (b) through the phase transformations caused by the stress wave propagation in the material. Despite extensive research work on the former mechanism, the latter one is still highly unknown, particularly at the atomistic scale. In this paper, the phase transformation, and consequently the energy dissipation, caused by the propagation of stress waves in single-crystal and polycrystalline NiTi alloys under shock wave loadings are investigated using molecular dynamics (MD) method. The nanostructure and dynamic response of the material, when subjected to a shock loading, are studied at the atomistic level. The effects of various nanoscale properties, including the orientation of lattice with respect to the shock loading direction, average grain size, and the effect of grain boundaries on the stress wave propagation, phase transformation propagation, and the energy dissipation in polycrystalline NiTi alloys are studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yazdandoost F, Mirzaeifar R (2017) Tilt grain boundaries energy and structure in NiTi alloys. Comput Mater Sci 131:108–119CrossRef Yazdandoost F, Mirzaeifar R (2017) Tilt grain boundaries energy and structure in NiTi alloys. Comput Mater Sci 131:108–119CrossRef
2.
Zurück zum Zitat Chowdhury P, Ren G, Sehitoglu H (2015) NiTi superelasticity via atomistic simulations. Philos Mag Lett 95:1–13CrossRef Chowdhury P, Ren G, Sehitoglu H (2015) NiTi superelasticity via atomistic simulations. Philos Mag Lett 95:1–13CrossRef
3.
Zurück zum Zitat Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD, Ludwig A, Thienhaus S, Wuttig M, Zhang Z (2006) Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 5(4):286–290CrossRef Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD, Ludwig A, Thienhaus S, Wuttig M, Zhang Z (2006) Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 5(4):286–290CrossRef
4.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G 221(4):535–552CrossRef Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G 221(4):535–552CrossRef
5.
Zurück zum Zitat DesRoches R, Delemont M (2002) Seismic retrofit of simply supported bridges using shape memory alloys. Eng Struct 24(3):325–332CrossRef DesRoches R, Delemont M (2002) Seismic retrofit of simply supported bridges using shape memory alloys. Eng Struct 24(3):325–332CrossRef
6.
Zurück zum Zitat DesRoches R, Smith B (2004) Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations. J Earthq Eng 8:415–429 DesRoches R, Smith B (2004) Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations. J Earthq Eng 8:415–429
7.
Zurück zum Zitat Lagoudas DC, Ravi-Chandar K, Sarh K, Popov P (2003) Dynamic loading of polycrystalline shape memory alloy rods. Mech Mater 35(7):689–716CrossRef Lagoudas DC, Ravi-Chandar K, Sarh K, Popov P (2003) Dynamic loading of polycrystalline shape memory alloy rods. Mech Mater 35(7):689–716CrossRef
8.
Zurück zum Zitat Mirzaeifar R, DesRoches R, Yavari A (2011) A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. Int J Solids Struct 48(3–4):611–624CrossRef Mirzaeifar R, DesRoches R, Yavari A (2011) A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. Int J Solids Struct 48(3–4):611–624CrossRef
10.
Zurück zum Zitat Sehitoglu H, Hamilton R, Maier H, and Chumlyakov Y (2004) Hysteresis in NiTi alloys. In: Journal de Physique IV (Proceedings). EDP sciences Sehitoglu H, Hamilton R, Maier H, and Chumlyakov Y (2004) Hysteresis in NiTi alloys. In: Journal de Physique IV (Proceedings). EDP sciences
11.
Zurück zum Zitat DesRoches R, Taftali B, Ellingwood BR (2010) Seismic performance assessment of steel frames with shape memory alloy connections. Part I analysis and seismic demands. J Earthq Eng 14(4):471–486CrossRef DesRoches R, Taftali B, Ellingwood BR (2010) Seismic performance assessment of steel frames with shape memory alloy connections. Part I analysis and seismic demands. J Earthq Eng 14(4):471–486CrossRef
12.
Zurück zum Zitat DesRoches BAR (2007) Effect of hysteretic properties of superelastic shape memory alloys on the seismic performance of structures. Struct Control Health Monit 14:301–320CrossRef DesRoches BAR (2007) Effect of hysteretic properties of superelastic shape memory alloys on the seismic performance of structures. Struct Control Health Monit 14:301–320CrossRef
13.
Zurück zum Zitat Nemat-Nasser S, Choi JY, Guo W-G, Isaacs JB, Taya M (2005) High strain-rate, small strain response of a NiTi shape-memory alloy. J Eng Mater Technol 127(1):83–89CrossRef Nemat-Nasser S, Choi JY, Guo W-G, Isaacs JB, Taya M (2005) High strain-rate, small strain response of a NiTi shape-memory alloy. J Eng Mater Technol 127(1):83–89CrossRef
14.
Zurück zum Zitat Yin Q, Wu X, Huang C (2017) Atomistic study on shock behaviour of NiTi shape memory alloy. Phil Mag 97(16):1311–1333CrossRef Yin Q, Wu X, Huang C (2017) Atomistic study on shock behaviour of NiTi shape memory alloy. Phil Mag 97(16):1311–1333CrossRef
15.
Zurück zum Zitat Lagoudas DC, Popov P (2003) Numerical studies of wave propagation in polycrystalline shape memory alloy rods. Smart Struct Mater 2003(5053):294–304 Lagoudas DC, Popov P (2003) Numerical studies of wave propagation in polycrystalline shape memory alloy rods. Smart Struct Mater 2003(5053):294–304
16.
Zurück zum Zitat Liao Y, Ye C, Lin D, Suslov S, Cheng GJ (2012) Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening. J Appl Phys 112(3):033515CrossRef Liao Y, Ye C, Lin D, Suslov S, Cheng GJ (2012) Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening. J Appl Phys 112(3):033515CrossRef
17.
Zurück zum Zitat Millett J, Bourne N (2004) The shock-induced mechanical response of the shape memory alloy, NiTi. Mater Sci Eng A 378(1):138–142CrossRef Millett J, Bourne N (2004) The shock-induced mechanical response of the shape memory alloy, NiTi. Mater Sci Eng A 378(1):138–142CrossRef
18.
Zurück zum Zitat Thakur A, Thadhani N, Schwarz R (1997) Shock-induced martensitic transformations in near-equiatomic NiTi alloys. Metall Mater Trans A 28(7):1445–1455CrossRef Thakur A, Thadhani N, Schwarz R (1997) Shock-induced martensitic transformations in near-equiatomic NiTi alloys. Metall Mater Trans A 28(7):1445–1455CrossRef
19.
Zurück zum Zitat Millett J, Bourne N, Gray G III (2002) Behavior of the shape memory alloy NiTi during one-dimensional shock loading. J Appl Phys 92(6):3107–3110CrossRef Millett J, Bourne N, Gray G III (2002) Behavior of the shape memory alloy NiTi during one-dimensional shock loading. J Appl Phys 92(6):3107–3110CrossRef
20.
Zurück zum Zitat Meziere Y, Millett J, Bourne N (2006) Equation of state and mechanical response of NiTi during one-dimensional shock loading. J Appl Phys 100(3):033513CrossRef Meziere Y, Millett J, Bourne N (2006) Equation of state and mechanical response of NiTi during one-dimensional shock loading. J Appl Phys 100(3):033513CrossRef
21.
Zurück zum Zitat Razorenov SV, Garkushin GV, Kanel GI, and Popov NN (2009) Shock-wave response of NiTi shape memory alloys in the transformation temperature range. In: AIP Conference Proceedings. AIP Razorenov SV, Garkushin GV, Kanel GI, and Popov NN (2009) Shock-wave response of NiTi shape memory alloys in the transformation temperature range. In: AIP Conference Proceedings. AIP
22.
Zurück zum Zitat Millett J, Bourne N, Gray III G, and Stevens G (2002) On the shock response of the shape memory alloy, NiTi. In: AIP Conference Proceedings. AIP Millett J, Bourne N, Gray III G, and Stevens G (2002) On the shock response of the shape memory alloy, NiTi. In: AIP Conference Proceedings. AIP
23.
Zurück zum Zitat Yuan F, Wu X (2012) Shock response of nanotwinned copper from large-scale molecular dynamics simulations. Phys Rev B 86(13):134108CrossRef Yuan F, Wu X (2012) Shock response of nanotwinned copper from large-scale molecular dynamics simulations. Phys Rev B 86(13):134108CrossRef
24.
Zurück zum Zitat Arman B, Luo S-N, Germann TC, Çağın T (2010) Dynamic response of Cu 46 Zr 54 metallic glass to high-strain-rate shock loading: plasticity, spall, and atomic-level structures. Phys Rev B 81(14):144201CrossRef Arman B, Luo S-N, Germann TC, Çağın T (2010) Dynamic response of Cu 46 Zr 54 metallic glass to high-strain-rate shock loading: plasticity, spall, and atomic-level structures. Phys Rev B 81(14):144201CrossRef
25.
Zurück zum Zitat Bringa E, Rosolankova K, Rudd R, Remington B, Wark J, Duchaineau M, Kalantar D, Hawreliak J, Belak J (2006) Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat Mater 5(10):805–809CrossRef Bringa E, Rosolankova K, Rudd R, Remington B, Wark J, Duchaineau M, Kalantar D, Hawreliak J, Belak J (2006) Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat Mater 5(10):805–809CrossRef
26.
Zurück zum Zitat Zhao F, Li B, Jian W, Wang L, Luo S (2015) Shock-induced melting of honeycomb-shaped Cu nanofoams: effects of porosity. J Appl Phys 118(3):035904CrossRef Zhao F, Li B, Jian W, Wang L, Luo S (2015) Shock-induced melting of honeycomb-shaped Cu nanofoams: effects of porosity. J Appl Phys 118(3):035904CrossRef
27.
Zurück zum Zitat Jiang S, Sewell TD, Thompson DL (2016) Molecular dynamics simulations of shock wave propagation through the crystal-melt interface of (100)-oriented nitromethane. J Phys Chem C 120(40):22989–23000CrossRef Jiang S, Sewell TD, Thompson DL (2016) Molecular dynamics simulations of shock wave propagation through the crystal-melt interface of (100)-oriented nitromethane. J Phys Chem C 120(40):22989–23000CrossRef
28.
Zurück zum Zitat Kadau K, Germann TC, Lomdahl PS, Holian BL (2002) Microscopic view of structural phase transitions induced by shock waves. Science 296(5573):1681–1684CrossRef Kadau K, Germann TC, Lomdahl PS, Holian BL (2002) Microscopic view of structural phase transitions induced by shock waves. Science 296(5573):1681–1684CrossRef
29.
Zurück zum Zitat Luo S-N, Germann TC, Desai TG, Tonks DL, An Q (2010) Anisotropic shock response of columnar nanocrystalline Cu. J Appl Phys 107(12):123507CrossRef Luo S-N, Germann TC, Desai TG, Tonks DL, An Q (2010) Anisotropic shock response of columnar nanocrystalline Cu. J Appl Phys 107(12):123507CrossRef
30.
Zurück zum Zitat Luo S-N, Germann TC, Tonks DL, An Q (2010) Shock wave loading and spallation of copper bicrystals with asymmetric Σ 3<110> tilt grain boundaries. J Appl Phys 108(9):093526CrossRef Luo S-N, Germann TC, Tonks DL, An Q (2010) Shock wave loading and spallation of copper bicrystals with asymmetric Σ 3<110> tilt grain boundaries. J Appl Phys 108(9):093526CrossRef
31.
Zurück zum Zitat Ma W, Zhu W, Jing F (2010) The shock-front structure of nanocrystalline aluminum. Appl Phys Lett 97(12):121903CrossRef Ma W, Zhu W, Jing F (2010) The shock-front structure of nanocrystalline aluminum. Appl Phys Lett 97(12):121903CrossRef
32.
Zurück zum Zitat Sichani MM, Spearot DE (2015) A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock. Comput Mater Sci 108:226–232CrossRef Sichani MM, Spearot DE (2015) A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock. Comput Mater Sci 108:226–232CrossRef
33.
Zurück zum Zitat Wang JJ and Guo WG (2012) Pseudo-elastic behavior of NiTi SMA under the quasi-static and the impact cyclic tests. In: Advanced materials research. Trans Tech Publ Wang JJ and Guo WG (2012) Pseudo-elastic behavior of NiTi SMA under the quasi-static and the impact cyclic tests. In: Advanced materials research. Trans Tech Publ
34.
Zurück zum Zitat Razorenov S, Garkushin G, Kashin O, Ratochka I (2011) Behavior of the Nickel–Titanium alloys with the shape memory effect under conditions of shock wave loading. Phys Solid State 53(4):824–829CrossRef Razorenov S, Garkushin G, Kashin O, Ratochka I (2011) Behavior of the Nickel–Titanium alloys with the shape memory effect under conditions of shock wave loading. Phys Solid State 53(4):824–829CrossRef
35.
Zurück zum Zitat Chen WW, Wu Q, Kang JH, Winfree NA (2001) Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001–750 s−1. Int J Solids Struct 38(50–51):8989–8998CrossRef Chen WW, Wu Q, Kang JH, Winfree NA (2001) Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001–750 s−1. Int J Solids Struct 38(50–51):8989–8998CrossRef
36.
Zurück zum Zitat Niemczura J, Ravi-Chandar K (2006) Dynamics of propagating phase boundaries in NiTi. J Mech Phys Solids 54(10):2136–2161CrossRef Niemczura J, Ravi-Chandar K (2006) Dynamics of propagating phase boundaries in NiTi. J Mech Phys Solids 54(10):2136–2161CrossRef
37.
Zurück zum Zitat Zhang X, Tang Z (2010) Experimental study on the dynamic behavior of TiNi cantilever beams with rectangular cross-section under transversal impact. Int J Impact Eng 37(7):813–827CrossRef Zhang X, Tang Z (2010) Experimental study on the dynamic behavior of TiNi cantilever beams with rectangular cross-section under transversal impact. Int J Impact Eng 37(7):813–827CrossRef
38.
Zurück zum Zitat Bekker A, Jimenez-Victory JC, Popov P, Lagoudas DC (2002) Impact induced propagation of phase transformation in a shape memory alloy rod. Int J Plast 18:1447–1479CrossRef Bekker A, Jimenez-Victory JC, Popov P, Lagoudas DC (2002) Impact induced propagation of phase transformation in a shape memory alloy rod. Int J Plast 18:1447–1479CrossRef
39.
Zurück zum Zitat Zurbitu J, Castillo G, Urrutibeascoa I, Aurrekoetxea J (2009) Low-energy tensile-impact behavior of superelastic NiTi shape memory alloy wires. Mech Mater 41(9):1050–1058CrossRef Zurbitu J, Castillo G, Urrutibeascoa I, Aurrekoetxea J (2009) Low-energy tensile-impact behavior of superelastic NiTi shape memory alloy wires. Mech Mater 41(9):1050–1058CrossRef
40.
Zurück zum Zitat Saletti D, Pattofatto S, Zhao H (2013) Measurement of phase transformation properties under moderate impact tensile loading in a NiTi alloy. Mech Mater 65:1–11CrossRef Saletti D, Pattofatto S, Zhao H (2013) Measurement of phase transformation properties under moderate impact tensile loading in a NiTi alloy. Mech Mater 65:1–11CrossRef
41.
Zurück zum Zitat Zurbitu J, Kustov S, Zabaleta A, Cesari E, and Aurrekoetxea J (2010) Thermo-mechanical behaviour of NiTi at impact. In: Shape memory alloys. InTech Zurbitu J, Kustov S, Zabaleta A, Cesari E, and Aurrekoetxea J (2010) Thermo-mechanical behaviour of NiTi at impact. In: Shape memory alloys. InTech
42.
Zurück zum Zitat Chen Y, Lagoudas DC (2005) Wave propagation in shape memory alloy rods under impulsive loads. Proc Royal Soc A 461(2064):3871–3892CrossRef Chen Y, Lagoudas DC (2005) Wave propagation in shape memory alloy rods under impulsive loads. Proc Royal Soc A 461(2064):3871–3892CrossRef
43.
Zurück zum Zitat Sadeghi O, Bakhtiari-Nejad M, Yazdandoost F, Shahab S, Mirzaeifar R (2018) Dissipation of cavitation-induced shock waves energy through phase transformation in NiTi alloys. Int J Mech Sci 137:304–314CrossRef Sadeghi O, Bakhtiari-Nejad M, Yazdandoost F, Shahab S, Mirzaeifar R (2018) Dissipation of cavitation-induced shock waves energy through phase transformation in NiTi alloys. Int J Mech Sci 137:304–314CrossRef
44.
Zurück zum Zitat Lai W, Liu B (2000) Lattice stability of some NiTi alloy phases versus their chemical composition and disordering. J Phys 12(5):L53 Lai W, Liu B (2000) Lattice stability of some NiTi alloy phases versus their chemical composition and disordering. J Phys 12(5):L53
45.
Zurück zum Zitat Zhong Y, Gall K, Zhu T (2011) Atomistic study of nanotwins in NiTi shape memory alloys. J Appl Phys 110(3):033532CrossRef Zhong Y, Gall K, Zhu T (2011) Atomistic study of nanotwins in NiTi shape memory alloys. J Appl Phys 110(3):033532CrossRef
46.
Zurück zum Zitat Zhong Y, Gall K, Zhu T (2012) Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars. Acta Mater 60(18):6301–6311CrossRef Zhong Y, Gall K, Zhu T (2012) Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars. Acta Mater 60(18):6301–6311CrossRef
47.
Zurück zum Zitat Lai WS, Liu BX (2000) Lattice stability of some NiTi alloy phases versus their chemical composition and disordering. J Phys 12(5):L53 Lai WS, Liu BX (2000) Lattice stability of some NiTi alloy phases versus their chemical composition and disordering. J Phys 12(5):L53
48.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef
49.
Zurück zum Zitat Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012CrossRef Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012CrossRef
50.
Zurück zum Zitat Boots BN (1982) The arrangement of cells in random networks. Metallography 15(1):53–62CrossRef Boots BN (1982) The arrangement of cells in random networks. Metallography 15(1):53–62CrossRef
51.
Zurück zum Zitat Brill T, Mittelbach S, Assmus W, Mullner M, Luthi B (1991) Elastic properties of NiTi. J Phys 3(48):9621 Brill T, Mittelbach S, Assmus W, Mullner M, Luthi B (1991) Elastic properties of NiTi. J Phys 3(48):9621
52.
Zurück zum Zitat Lane C (2014) Wave propagation in anisotropic media. In: The development of a 2D ultrasonic array inspection for single crystal turbine blades. Springer: Cham. p. 13–39 Lane C (2014) Wave propagation in anisotropic media. In: The development of a 2D ultrasonic array inspection for single crystal turbine blades. Springer: Cham. p. 13–39
53.
Zurück zum Zitat Huang XY, Ackland GJ, Rabe KM (2003) Crystal structures and shape-memory behaviour of NiTi. Nat Mater 2(5):307–311CrossRef Huang XY, Ackland GJ, Rabe KM (2003) Crystal structures and shape-memory behaviour of NiTi. Nat Mater 2(5):307–311CrossRef
54.
Zurück zum Zitat Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48(11):2923–2927CrossRef Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48(11):2923–2927CrossRef
55.
Zurück zum Zitat Qin S-J, Shang J-X, Wang F-H, Chen Y (2018) Symmetrical tilt grain boundary engineering of NiTi shape memory alloy: an atomistic insight. Mater Des 137:361–370CrossRef Qin S-J, Shang J-X, Wang F-H, Chen Y (2018) Symmetrical tilt grain boundary engineering of NiTi shape memory alloy: an atomistic insight. Mater Des 137:361–370CrossRef
56.
Zurück zum Zitat Yazdandoost F, Mirzaeifar R (2017) Generalized stacking fault energy and dislocation properties in NiTi shape memory alloys. J Alloy Compd 709:72–81CrossRef Yazdandoost F, Mirzaeifar R (2017) Generalized stacking fault energy and dislocation properties in NiTi shape memory alloys. J Alloy Compd 709:72–81CrossRef
57.
Zurück zum Zitat Wang J, Sehitoglu H, Maier H (2014) Dislocation slip stress prediction in shape memory alloys. Int J Plast 54:247–266CrossRef Wang J, Sehitoglu H, Maier H (2014) Dislocation slip stress prediction in shape memory alloys. Int J Plast 54:247–266CrossRef
58.
Zurück zum Zitat Ezaz T, Wang J, Sehitoglu H, Maier H (2013) Plastic deformation of NiTi shape memory alloys. Acta Mater 61(1):67–78CrossRef Ezaz T, Wang J, Sehitoglu H, Maier H (2013) Plastic deformation of NiTi shape memory alloys. Acta Mater 61(1):67–78CrossRef
Metadaten
Titel
Stress Wave and Phase Transformation Propagation at the Atomistic Scale in NiTi Shape Memory Alloys Subjected to Shock Loadings
verfasst von
Fatemeh Yazdandoost
Reza Mirzaeifar
Publikationsdatum
21.08.2018
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2018
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-018-0189-5

Weitere Artikel der Ausgabe 4/2018

Shape Memory and Superelasticity 4/2018 Zur Ausgabe

SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME OF CONTRIBUTIONS TO UNDERSTANDING MARTENSITE, INVITED REVIEW PAPER

Designing NiTiAg Shape Memory Alloys by Vacuum Arc Remelting: First Practical Insights on Melting and Casting

SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME OF CONTRIBUTIONS TO UNDERSTANDING MARTENSITE, INVITED REVIEW PAPER

A Global Approach for the Fatigue of Shape Memory Alloys

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.