Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

22.11.2018 | Original | Ausgabe 1/2019

European Journal of Wood and Wood Products 1/2019

Stress wave evaluation by accelerometer and acoustic emission sensor for thermally modified wood classification using three types of neural networks

Zeitschrift:
European Journal of Wood and Wood Products > Ausgabe 1/2019
Autoren:
Vahid Nasir, Sepideh Nourian, Stavros Avramidis, Julie Cool
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Classification of thermally modified wood (TMW) allowing the distinction between different processing temperatures and the corresponding changes in wood properties is a crucial task in TMW grading. In this study, stress wave evaluation technique was used to classify the heat treatment level. Accordingly, an acoustic emission (AE) sensor and a pair of accelerometers captured stress waves generated by pendulum impact, and the data was used to classify the heat treatment level of thermally modified Western hemlock wood samples. Sensory features were extracted from time, frequency, and wavelet domain analysis. The extracted features were then used to train multilayer perceptron (MLP), group method of data handling (GMDH), and linear vector quantization (LVQ) neural networks for TMW classification. The results showed that while the features extracted from the accelerometers such as stress wave velocity and wood dynamic modulus of elasticity showed poor classification performance, acoustic emission sensory features were effective for classification of TMW. Wavelet domain features lead to better classification than those extracted from time and frequency domains. Feature fusion approach comprising the features from all the signal domains showed the best classification performance that was further improved by using a dimensionality reduction approach. The linear discriminant analysis was conducted on all acoustic emission features and resulted in 91.1% and 89.1% accuracy obtained from the LVQ and GMDH network, respectively. This performance was further increased to 98% and 97% using the LVQ and GMDH models when the input was combined with wood moisture content. The MLP neural network did not seem as suitable as the other two models. Neural network modeling using the captured stress wave data from an AE sensor could therefore be a promising nondestructive evaluation method for TMW classification.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

European Journal of Wood and Wood Products 1/2019 Zur Ausgabe

Editorial

Editorial