Skip to main content
Erschienen in: Journal of Materials Science 3/2019

24.09.2018 | Composites

Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance

verfasst von: Xiang Fu, Maximiano Ramos, Ahmed M. Al-Jumaily, Ata Meshkinzar, Xiyong Huang

Erschienen in: Journal of Materials Science | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, the increasing demand for flexible and wearable devices requires the synthesis of novel stretchable and piezoresistive materials. Piezoresistive polymer composites are popular due to their excellent piezoresistivity and high stretchability, which can readily be attached to clothes or human body. In this study, a stretchable and sensitive strain sensor based on multi-wall carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) composite with an excellent overall performance was fabricated in a facile and effective way. The composite with 7% MWCNTs is ideal for strain sensor compared to those with 5% and 9% MWCNTs. Not only can the gauge factor reach 5–9 under 10–40% strain, but also the curve of relative change in resistance versus strain is almost linear. The strain sensor can respond immediately with low hysteresis. The strain sensor also exhibits great stability under 1000 cycles of stretching/releasing, demonstrating the desirable long-term endurance to mechanical stimuli as well. The strain sensor was then implemented to monitor human motions (finger and wrist bending), precisely sensing the motion deformation and states. In conclusion, the reported sensor based on MWCNT/PDMS composite possesses numerous favorable characteristics including high sensitivity, good stretchability, ease of fabrication, and promising practical application in the field of biomedical system and wearable electronic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Tadakaluru S, Thongsuwan W, Singjai P (2014) Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14:868–876CrossRef Tadakaluru S, Thongsuwan W, Singjai P (2014) Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14:868–876CrossRef
2.
Zurück zum Zitat Yao S, Zhu Y (2015) Nanomaterial—enabled stretchable conductors: strategies, materials and devices. Adv Mater 27:1480–1511CrossRef Yao S, Zhu Y (2015) Nanomaterial—enabled stretchable conductors: strategies, materials and devices. Adv Mater 27:1480–1511CrossRef
3.
Zurück zum Zitat Lu N, Lu C, Yang S et al (2012) Highly sensitive skin—mountable strain gauges based entirely on elastomers. Adv Funct Mater 22:4044–4050CrossRef Lu N, Lu C, Yang S et al (2012) Highly sensitive skin—mountable strain gauges based entirely on elastomers. Adv Funct Mater 22:4044–4050CrossRef
4.
Zurück zum Zitat Zhao X, Hua Q, Yu R et al (2015) Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv Electron Mater 1:1500142CrossRef Zhao X, Hua Q, Yu R et al (2015) Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv Electron Mater 1:1500142CrossRef
5.
Zurück zum Zitat Pang C, Koo JH, Nguyen A et al (2015) Highly skin—conformal microhairy sensor for pulse signal amplification. Adv Mater 27:634–640CrossRef Pang C, Koo JH, Nguyen A et al (2015) Highly skin—conformal microhairy sensor for pulse signal amplification. Adv Mater 27:634–640CrossRef
6.
Zurück zum Zitat Yao S, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6:2345–2352CrossRef Yao S, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6:2345–2352CrossRef
7.
Zurück zum Zitat Hwang B-U, Lee J-H, Trung TQ et al (2015) Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9:8801–8810CrossRef Hwang B-U, Lee J-H, Trung TQ et al (2015) Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9:8801–8810CrossRef
8.
Zurück zum Zitat Gong S, Schwalb W, Wang Y et al (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:3132CrossRef Gong S, Schwalb W, Wang Y et al (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:3132CrossRef
9.
Zurück zum Zitat Wang X, Gu Y, Xiong Z et al (2014) Silk—molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26:1336–1342CrossRef Wang X, Gu Y, Xiong Z et al (2014) Silk—molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26:1336–1342CrossRef
10.
Zurück zum Zitat Li X, Lin Z-H, Cheng G et al (2014) 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8:10674–10681CrossRef Li X, Lin Z-H, Cheng G et al (2014) 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8:10674–10681CrossRef
11.
Zurück zum Zitat Niu Z, Dong H, Zhu B et al (2013) Highly stretchable, integrated supercapacitors based on single—walled carbon nanotube films with continuous reticulate architecture. Adv Mater 25:1058–1064CrossRef Niu Z, Dong H, Zhu B et al (2013) Highly stretchable, integrated supercapacitors based on single—walled carbon nanotube films with continuous reticulate architecture. Adv Mater 25:1058–1064CrossRef
12.
Zurück zum Zitat Amjadi M, Yoon YJ, Park I (2015) Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes—ecoflex nanocomposites. Nanotechnology 26:375501CrossRef Amjadi M, Yoon YJ, Park I (2015) Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes—ecoflex nanocomposites. Nanotechnology 26:375501CrossRef
13.
Zurück zum Zitat Fan Q, Qin Z, Gao S et al (2012) The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%. Carbon 50:4085–4092CrossRef Fan Q, Qin Z, Gao S et al (2012) The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%. Carbon 50:4085–4092CrossRef
14.
Zurück zum Zitat Lee P, Lee J, Lee H et al (2012) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24:3326–3332CrossRef Lee P, Lee J, Lee H et al (2012) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24:3326–3332CrossRef
15.
Zurück zum Zitat Yamada T, Hayamizu Y, Yamamoto Y et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301CrossRef Yamada T, Hayamizu Y, Yamamoto Y et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301CrossRef
16.
Zurück zum Zitat Wang Y, Mi H, Zheng Q et al (2016) Highly stretchable and sensitive piezoresistive carbon nanotube/elastomeric triisocyanate-crosslinked polytetrahydrofuran nanocomposites. J Mater Chem C 4:460–467CrossRef Wang Y, Mi H, Zheng Q et al (2016) Highly stretchable and sensitive piezoresistive carbon nanotube/elastomeric triisocyanate-crosslinked polytetrahydrofuran nanocomposites. J Mater Chem C 4:460–467CrossRef
17.
Zurück zum Zitat Dong Y, Ni Q-Q, Li L et al (2014) Novel vapor-grown carbon nanofiber/epoxy shape memory nanocomposites prepared via latex technology. Mater Lett 132:206–209CrossRef Dong Y, Ni Q-Q, Li L et al (2014) Novel vapor-grown carbon nanofiber/epoxy shape memory nanocomposites prepared via latex technology. Mater Lett 132:206–209CrossRef
18.
Zurück zum Zitat Dong Y, Xia H, Zhu Y et al (2015) Effect of epoxy-graft-polyoxyethylene octyl phenyl ether on preparation, mechanical properties and triple-shape memory effect of carbon nanotube/water-borne epoxy nanocomposites. Compos Sci Technol 120:17–25CrossRef Dong Y, Xia H, Zhu Y et al (2015) Effect of epoxy-graft-polyoxyethylene octyl phenyl ether on preparation, mechanical properties and triple-shape memory effect of carbon nanotube/water-borne epoxy nanocomposites. Compos Sci Technol 120:17–25CrossRef
19.
Zurück zum Zitat Tian H, Shu Y, Cui Y-L et al (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705CrossRef Tian H, Shu Y, Cui Y-L et al (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705CrossRef
20.
Zurück zum Zitat Park JJ, Hyun WJ, Mun SC et al (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7:6317–6324CrossRef Park JJ, Hyun WJ, Mun SC et al (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7:6317–6324CrossRef
21.
Zurück zum Zitat Amjadi M, Pichitpajongkit A, Lee S et al (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8:5154–5163CrossRef Amjadi M, Pichitpajongkit A, Lee S et al (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8:5154–5163CrossRef
22.
Zurück zum Zitat Cai L, Song L, Luan P et al (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3:3048CrossRef Cai L, Song L, Luan P et al (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3:3048CrossRef
23.
Zurück zum Zitat Li J, Ma W, Song L et al (2011) Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett 11:4636–4641CrossRef Li J, Ma W, Song L et al (2011) Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett 11:4636–4641CrossRef
24.
Zurück zum Zitat Ma W, Liu L, Zhang Z et al (2009) High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett 9:2855–2861CrossRef Ma W, Liu L, Zhang Z et al (2009) High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett 9:2855–2861CrossRef
25.
Zurück zum Zitat Huang Y, Ahir S, Terentjev E (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev B 73:125422CrossRef Huang Y, Ahir S, Terentjev E (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev B 73:125422CrossRef
26.
Zurück zum Zitat Robert C, Feller JFO, Castro ML (2012) Sensing skin for strain monitoring made of PC–CNT conductive polymer nanocomposite sprayed layer by layer. ACS Appl Mater Interfaces 4:3508–3516CrossRef Robert C, Feller JFO, Castro ML (2012) Sensing skin for strain monitoring made of PC–CNT conductive polymer nanocomposite sprayed layer by layer. ACS Appl Mater Interfaces 4:3508–3516CrossRef
27.
Zurück zum Zitat Xue C, Du G-Q, Chen L-J et al (2014) A carbon nanotube filled polydimethylsiloxane hybrid membrane for enhanced butanol recovery. Sci Rep 4:5925CrossRef Xue C, Du G-Q, Chen L-J et al (2014) A carbon nanotube filled polydimethylsiloxane hybrid membrane for enhanced butanol recovery. Sci Rep 4:5925CrossRef
28.
Zurück zum Zitat Park M, Kim H, Youngblood JP (2008) Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology 19:055705CrossRef Park M, Kim H, Youngblood JP (2008) Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology 19:055705CrossRef
29.
Zurück zum Zitat Wang Z, Ye X (2013) A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology 24:265704CrossRef Wang Z, Ye X (2013) A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology 24:265704CrossRef
30.
Zurück zum Zitat Panozzo F, Zappalorto M, Quaresimin M (2017) Analytical model for the prediction of the piezoresistive behavior of CNT modified polymers. Compos B 109:53–63CrossRef Panozzo F, Zappalorto M, Quaresimin M (2017) Analytical model for the prediction of the piezoresistive behavior of CNT modified polymers. Compos B 109:53–63CrossRef
32.
Zurück zum Zitat Ferreira A, Martínez MT, Ansón-Casaos A et al (2013) Relationship between electromechanical response and percolation threshold in carbon nanotube/poly(vinylidene fluoride) composites. Carbon 61:568–576CrossRef Ferreira A, Martínez MT, Ansón-Casaos A et al (2013) Relationship between electromechanical response and percolation threshold in carbon nanotube/poly(vinylidene fluoride) composites. Carbon 61:568–576CrossRef
33.
Zurück zum Zitat Jandro LA, César YK, Gilles PT et al (2015) Strain gauge sensors comprised of carbon nanotube yarn: parametric numerical analysis of their piezoresistive response. Smart Mater Struct 24:075018CrossRef Jandro LA, César YK, Gilles PT et al (2015) Strain gauge sensors comprised of carbon nanotube yarn: parametric numerical analysis of their piezoresistive response. Smart Mater Struct 24:075018CrossRef
34.
Zurück zum Zitat Georgousis G, Pandis C, Kalamiotis A et al (2015) Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement. Compos B 68:162–169CrossRef Georgousis G, Pandis C, Kalamiotis A et al (2015) Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement. Compos B 68:162–169CrossRef
35.
Zurück zum Zitat Kim TK, Kim JK, Jeong OC (2011) Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectron Eng 88:1982–1985CrossRef Kim TK, Kim JK, Jeong OC (2011) Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectron Eng 88:1982–1985CrossRef
36.
Zurück zum Zitat Kong J-H, Jang N-S, Kim S-H et al (2014) Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 77:199–207CrossRef Kong J-H, Jang N-S, Kim S-H et al (2014) Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 77:199–207CrossRef
37.
Zurück zum Zitat Michelis F, Bodelot L, Bonnassieux Y et al (2015) Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 95:1020–1026CrossRef Michelis F, Bodelot L, Bonnassieux Y et al (2015) Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 95:1020–1026CrossRef
38.
Zurück zum Zitat Qin Q, Zhu Y (2011) Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5:7404–7410CrossRef Qin Q, Zhu Y (2011) Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5:7404–7410CrossRef
39.
Zurück zum Zitat Suhr J, Koratkar N, Keblinski P et al (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4:134–137CrossRef Suhr J, Koratkar N, Keblinski P et al (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4:134–137CrossRef
40.
Zurück zum Zitat Yu X-G, Li Y-Q, Zhu W-B et al (2017) A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection. Nanoscale 9:6680–6685CrossRef Yu X-G, Li Y-Q, Zhu W-B et al (2017) A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection. Nanoscale 9:6680–6685CrossRef
41.
Zurück zum Zitat Zhbanov AI, Pogorelov EG, Chang Y-C (2010) Van der Waals interaction between two crossed carbon nanotubes. ACS Nano 4:5937–5945CrossRef Zhbanov AI, Pogorelov EG, Chang Y-C (2010) Van der Waals interaction between two crossed carbon nanotubes. ACS Nano 4:5937–5945CrossRef
42.
Zurück zum Zitat Leyva Egurrola S, Del Castillo Castro T, Castillo Ortega MM et al (2017) Electrical, mechanical, and piezoresistive properties of carbon nanotube–polyaniline hybrid filled polydimethylsiloxane composites. J Appl Polym Sci 134:44780CrossRef Leyva Egurrola S, Del Castillo Castro T, Castillo Ortega MM et al (2017) Electrical, mechanical, and piezoresistive properties of carbon nanotube–polyaniline hybrid filled polydimethylsiloxane composites. J Appl Polym Sci 134:44780CrossRef
43.
Zurück zum Zitat Roh E, Hwang B-U, Kim D et al (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9:6252–6261CrossRef Roh E, Hwang B-U, Kim D et al (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9:6252–6261CrossRef
44.
Zurück zum Zitat Liu C-X, Choi J-W (2014) Analyzing resistance response of embedded PDMS and carbon nanotubes composite under tensile strain. Microelectron Eng 117:1–7CrossRef Liu C-X, Choi J-W (2014) Analyzing resistance response of embedded PDMS and carbon nanotubes composite under tensile strain. Microelectron Eng 117:1–7CrossRef
45.
Zurück zum Zitat Jin L, Bower C, Zhou O (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73:1197–1199CrossRef Jin L, Bower C, Zhou O (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73:1197–1199CrossRef
46.
Zurück zum Zitat Hu N, Karube Y, Arai M et al (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680–687CrossRef Hu N, Karube Y, Arai M et al (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680–687CrossRef
47.
Zurück zum Zitat Park C, Wilkinson J, Banda S et al (2006) Aligned single—wall carbon nanotube polymer composites using an electric field. J Polym Sci Part B Polym Phys 44:1751–1762CrossRef Park C, Wilkinson J, Banda S et al (2006) Aligned single—wall carbon nanotube polymer composites using an electric field. J Polym Sci Part B Polym Phys 44:1751–1762CrossRef
48.
Zurück zum Zitat Tang Y, Zhao Z, Hu H et al (2015) Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl Mater Interfaces 7:27432–27439CrossRef Tang Y, Zhao Z, Hu H et al (2015) Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl Mater Interfaces 7:27432–27439CrossRef
49.
Zurück zum Zitat Wang Y, Wang L, Yang T et al (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater 24:4666–4670CrossRef Wang Y, Wang L, Yang T et al (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater 24:4666–4670CrossRef
Metadaten
Titel
Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance
verfasst von
Xiang Fu
Maximiano Ramos
Ahmed M. Al-Jumaily
Ata Meshkinzar
Xiyong Huang
Publikationsdatum
24.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2954-4

Weitere Artikel der Ausgabe 3/2019

Journal of Materials Science 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.