Skip to main content
Erschienen in: Mechanics of Composite Materials 4/2023

04.09.2023

Strong and Tough Bulk Metallic Glass Composites Based on the Double-Network Concept

verfasst von: Y. Jiang, Y. Zhu, T. Li, X. Ding

Erschienen in: Mechanics of Composite Materials | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A double-network concept is first adopted to toughen bulk metallic glasses (BMGs) by combining BMG cellular skeletons as the filler and a ductile alloy as the matrix. The strengthening and toughening mechanisms of these resulting composites are elucidated using FEM simulations. Three typical metallic glass composites with different cellular BMG skeletons, exhibiting a substantial increase in their tensile plasticity, are considered. Numerical results showed that these composites greatly exceeded the corresponding cellular skeletons in the tensile strength and toughness. The resulting composites far exceeded those of either of their parent materials in the most of their mechanical characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. R., 44, Nos. 2-3, 45-89 (2004). W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. R., 44, Nos. 2-3, 45-89 (2004).
2.
Zurück zum Zitat P. Saini and R. L. Narayan, “On simultaneous enhancement in local yield strength and plasticity of short-term annealed bulk metallic glasses,” J. Alloys Comp., 898, 162960 (2022).CrossRef P. Saini and R. L. Narayan, “On simultaneous enhancement in local yield strength and plasticity of short-term annealed bulk metallic glasses,” J. Alloys Comp., 898, 162960 (2022).CrossRef
3.
Zurück zum Zitat L. Zhang, R. L. Narayan, H. M. Fu, U. Ramamurty, W. R. Li, Y. D. Li, and H. F. Zhang, “Tuning the microstructure and metastability of b-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites,” Acta Mater., 168, 24-36 (2019).CrossRef L. Zhang, R. L. Narayan, H. M. Fu, U. Ramamurty, W. R. Li, Y. D. Li, and H. F. Zhang, “Tuning the microstructure and metastability of b-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites,” Acta Mater., 168, 24-36 (2019).CrossRef
4.
Zurück zum Zitat L. Zhang, R. L. Narayan, B. A. Sun, T. Y. Yan, U. Ramamurty, J. Eckert, and H. F. Zhang, “Cooperative shear in bulk metallic glass composites containing metastable β-Ti dendrites,” Phys. Rev. Lett., 125, 055501 (2020).CrossRef L. Zhang, R. L. Narayan, B. A. Sun, T. Y. Yan, U. Ramamurty, J. Eckert, and H. F. Zhang, “Cooperative shear in bulk metallic glass composites containing metastable β-Ti dendrites,” Phys. Rev. Lett., 125, 055501 (2020).CrossRef
5.
Zurück zum Zitat L. Zhang, H. F. Zhang, W. Q. Li, T. Gemming, P. Wang, M. Bönisch, D. Şopu, J. Eckert, and S. Pauly, “β-type Ti-based bulk metallic glass composites with tailored structural metastability,” J. Alloys Comp., 708, 972-981 (2017).CrossRef L. Zhang, H. F. Zhang, W. Q. Li, T. Gemming, P. Wang, M. Bönisch, D. Şopu, J. Eckert, and S. Pauly, “β-type Ti-based bulk metallic glass composites with tailored structural metastability,” J. Alloys Comp., 708, 972-981 (2017).CrossRef
6.
Zurück zum Zitat P. C. Wong, S. M. Song, Y. Y. Nien, W. R. Wang, P. H. Tsai, J. L. Wu, and J. S. C. Jang, “Mechanical properties enhanced by the dispersion of porous Mo particles in the biodegradable solid and bi-phase core–shell structure of Mg-based bulk metallic glass composites for applications in orthopedic implants,” J. Alloys. Comp., 877, 160233 (2021).CrossRef P. C. Wong, S. M. Song, Y. Y. Nien, W. R. Wang, P. H. Tsai, J. L. Wu, and J. S. C. Jang, “Mechanical properties enhanced by the dispersion of porous Mo particles in the biodegradable solid and bi-phase core–shell structure of Mg-based bulk metallic glass composites for applications in orthopedic implants,” J. Alloys. Comp., 877, 160233 (2021).CrossRef
7.
Zurück zum Zitat D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, 451, 1085-1089 (2008).CrossRef D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, 451, 1085-1089 (2008).CrossRef
8.
Zurück zum Zitat H. Y. Li, J. W. Qiao, Z. Wang, X. H. Shi, H. J. Yang, and Y. C. Wu, “A semi-empirical model for predicting yielding in metallic glass matrix composites,” Scripta Mater., 170, 71-75 (2019).CrossRef H. Y. Li, J. W. Qiao, Z. Wang, X. H. Shi, H. J. Yang, and Y. C. Wu, “A semi-empirical model for predicting yielding in metallic glass matrix composites,” Scripta Mater., 170, 71-75 (2019).CrossRef
9.
Zurück zum Zitat J. W. Qiao, H. L. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng. R, 100, 1-69 (2016).CrossRef J. W. Qiao, H. L. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng. R, 100, 1-69 (2016).CrossRef
10.
Zurück zum Zitat W. J. Gao, W. W. Zhang, T. Zhang, C. Yang, X. S. Huang, Z. Y. Liu, Z. Wang, W. H. Li, W. R. Li, L. Li, and L. H. Liu, “Large tensile plasticity in Zr-based metallic glass/ stainless steel interpenetrating-phase composites prepared by high pressure die casting,” Comp. Part B, 224, 109226 (2021).CrossRef W. J. Gao, W. W. Zhang, T. Zhang, C. Yang, X. S. Huang, Z. Y. Liu, Z. Wang, W. H. Li, W. R. Li, L. Li, and L. H. Liu, “Large tensile plasticity in Zr-based metallic glass/ stainless steel interpenetrating-phase composites prepared by high pressure die casting,” Comp. Part B, 224, 109226 (2021).CrossRef
11.
Zurück zum Zitat B. Sarac and J. Schroers, “From brittle to ductile: Density optimization for Zr-BMG cellular structures,” Scripta Mater., 68, No. 12, 921-924 (2013).CrossRef B. Sarac and J. Schroers, “From brittle to ductile: Density optimization for Zr-BMG cellular structures,” Scripta Mater., 68, No. 12, 921-924 (2013).CrossRef
12.
Zurück zum Zitat Z. Liu, W. Chen, J. Carstensen, J. Ketkaew, R. Miguel, O. Mota, J. K. Guest, and J. Schroers, “3D metallic glass cellular structures,” Acta Mater., 105, 35-43 (2016).CrossRef Z. Liu, W. Chen, J. Carstensen, J. Ketkaew, R. Miguel, O. Mota, J. K. Guest, and J. Schroers, “3D metallic glass cellular structures,” Acta Mater., 105, 35-43 (2016).CrossRef
13.
Zurück zum Zitat W. Chen, Z. Liu, H. M. Robinson, and J. Schroers, “Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures,” Acta Mater., 73, 259–274 (2014).CrossRef W. Chen, Z. Liu, H. M. Robinson, and J. Schroers, “Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures,” Acta Mater., 73, 259–274 (2014).CrossRef
14.
Zurück zum Zitat S. S. Hirmukhe, K. E. Prasad, and I. Singh, “Finite element analysis of deformation and failure mechanisms in nanoscale hexagonal cellular structures of metallic glasses,” Mech. Mater., 160, 103946 (2021).CrossRef S. S. Hirmukhe, K. E. Prasad, and I. Singh, “Finite element analysis of deformation and failure mechanisms in nanoscale hexagonal cellular structures of metallic glasses,” Mech. Mater., 160, 103946 (2021).CrossRef
15.
Zurück zum Zitat D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite,” J. Mater. Sci. Techn., 106, 225-235 (2022).CrossRef D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite,” J. Mater. Sci. Techn., 106, 225-235 (2022).CrossRef
16.
Zurück zum Zitat R. L. Narayan, P. Tandaiya, G. R. Garrett, M. D. Demetriou, and U. Ramamurty, “On the variability in fracture toughness of ‘ductile’ bulk metallic glasses,” Scripta Mater., 102, 75-78 (2015).CrossRef R. L. Narayan, P. Tandaiya, G. R. Garrett, M. D. Demetriou, and U. Ramamurty, “On the variability in fracture toughness of ‘ductile’ bulk metallic glasses,” Scripta Mater., 102, 75-78 (2015).CrossRef
17.
Zurück zum Zitat D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Shear fracture in bulk metallic glass composites,” Acta Mater., 213, 116963 (2021).CrossRef D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Shear fracture in bulk metallic glass composites,” Acta Mater., 213, 116963 (2021).CrossRef
18.
Zurück zum Zitat S. Y. Yuan, X. X. Song, and P. S. Branicio, “Tuning the mechanical properties of shape memory metallic glass composites with brick and mortar designs,” Scripta Mater., 186, 69-73 (2020).CrossRef S. Y. Yuan, X. X. Song, and P. S. Branicio, “Tuning the mechanical properties of shape memory metallic glass composites with brick and mortar designs,” Scripta Mater., 186, 69-73 (2020).CrossRef
19.
Zurück zum Zitat Y. P. Jiang, L. G. Sun, Q. Q. Wu, and K. Qiu, “Enhanced tensile ductility of metallic glass matrix composites with novel microstructure,” J. Non-Cryst. Solids, 459, 26-31 (2017).CrossRef Y. P. Jiang, L. G. Sun, Q. Q. Wu, and K. Qiu, “Enhanced tensile ductility of metallic glass matrix composites with novel microstructure,” J. Non-Cryst. Solids, 459, 26-31 (2017).CrossRef
20.
Zurück zum Zitat Z. D. Sha, C. M. She, G. K. Xu, Q. X. Pei, Z. S. Liu, T. J. Wang, and H. J. Gao, “Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties,” Mater. Today, 20, No. 10, 569-576 (2017).CrossRef Z. D. Sha, C. M. She, G. K. Xu, Q. X. Pei, Z. S. Liu, T. J. Wang, and H. J. Gao, “Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties,” Mater. Today, 20, No. 10, 569-576 (2017).CrossRef
21.
Zurück zum Zitat R. Liontas and J. R. Greer, “3D nano-architected metallic glass: Size effect suppresses catastrophic failure,” Acta Mater., 133, 393-407 (2017).CrossRef R. Liontas and J. R. Greer, “3D nano-architected metallic glass: Size effect suppresses catastrophic failure,” Acta Mater., 133, 393-407 (2017).CrossRef
22.
Zurück zum Zitat C. Zhang, X. M. Li, S. Q. Liu, H. Liu, L. J. Yu, and L. Liu, “3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications,” J. Alloys Comp., 790, 963-973 (2019).CrossRef C. Zhang, X. M. Li, S. Q. Liu, H. Liu, L. J. Yu, and L. Liu, “3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications,” J. Alloys Comp., 790, 963-973 (2019).CrossRef
23.
Zurück zum Zitat C. Zhang, D. Ouyang, S. Pauly, and L. Liu, “3D printing of bulk metallic glasses,” Mater. Sci. Eng. R, 145, 100625 (2021).CrossRef C. Zhang, D. Ouyang, S. Pauly, and L. Liu, “3D printing of bulk metallic glasses,” Mater. Sci. Eng. R, 145, 100625 (2021).CrossRef
24.
Zurück zum Zitat J. P. Gong, “Materials both tough and soft,” Science, 344, No. 6180, 161-162 (2014).CrossRef J. P. Gong, “Materials both tough and soft,” Science, 344, No. 6180, 161-162 (2014).CrossRef
25.
Zurück zum Zitat J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature, 489, 133-136 (2012).CrossRef J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature, 489, 133-136 (2012).CrossRef
26.
Zurück zum Zitat E. Ducrot, Y. L. Chen, M. Bulters, R. P. Sijbesma, and C. Creton, “Toughening elastomers with sacrificial bonds and watching them break,” Science, 344, No. 6180, 186-189 (2014).CrossRef E. Ducrot, Y. L. Chen, M. Bulters, R. P. Sijbesma, and C. Creton, “Toughening elastomers with sacrificial bonds and watching them break,” Science, 344, No. 6180, 186-189 (2014).CrossRef
27.
Zurück zum Zitat T. Okumura, R. Takahashi, K. Hagita, D. R. King, and J. P. Gong, “Improving the strength and toughness of macroscale double networks by exploiting Poisson’s ratio mismatch,” Scientific Reports, 11, 13280 (2021).CrossRef T. Okumura, R. Takahashi, K. Hagita, D. R. King, and J. P. Gong, “Improving the strength and toughness of macroscale double networks by exploiting Poisson’s ratio mismatch,” Scientific Reports, 11, 13280 (2021).CrossRef
28.
Zurück zum Zitat F. Spaepen, “A microscopic mechanism for steady-state inhomogeneous flow in metallic glasses,” Acta Metall., 25, No. 4, 407-415 (1977).CrossRef F. Spaepen, “A microscopic mechanism for steady-state inhomogeneous flow in metallic glasses,” Acta Metall., 25, No. 4, 407-415 (1977).CrossRef
29.
Zurück zum Zitat P. S. Steif, F. Spaepen, and J. W. Hutchinson, “Strain localization in amorphous metals,” Acta Metall., 30, No. 2, 447-455(1982).CrossRef P. S. Steif, F. Spaepen, and J. W. Hutchinson, “Strain localization in amorphous metals,” Acta Metall., 30, No. 2, 447-455(1982).CrossRef
30.
Zurück zum Zitat J. W. Hutchinson, “Generalizing J-2 flow theory: Fundamental issues in strain gradient plasticity,” Acta Mech. Sinica, 28, No. 4, 1078-1086 (2012).CrossRef J. W. Hutchinson, “Generalizing J-2 flow theory: Fundamental issues in strain gradient plasticity,” Acta Mech. Sinica, 28, No. 4, 1078-1086 (2012).CrossRef
31.
Zurück zum Zitat Y. F. Gao, “An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model,” Modell. Simul. Mater. Sci. Eng., 14, No. 8, 1329-1345 (2006).CrossRef Y. F. Gao, “An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model,” Modell. Simul. Mater. Sci. Eng., 14, No. 8, 1329-1345 (2006).CrossRef
32.
Zurück zum Zitat A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: part I-Yield criteria and flow rules for porous ductile media,” J. Eng. Mater-T ASME, 99, 2-15(1977).CrossRef A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: part I-Yield criteria and flow rules for porous ductile media,” J. Eng. Mater-T ASME, 99, 2-15(1977).CrossRef
33.
Zurück zum Zitat ABAQUS Theory Manual, HKS inc., 2010, 510. ABAQUS Theory Manual, HKS inc., 2010, 510.
34.
Zurück zum Zitat B. A. Sun, Y. C. Hu, D. P. Wang, Z. G. Zhu, P. Wen, W. H. Wang, C. T. Liu, and Y. Yang, “Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses,” Acta Mater., 121, 266-276 (2016).CrossRef B. A. Sun, Y. C. Hu, D. P. Wang, Z. G. Zhu, P. Wen, W. H. Wang, C. T. Liu, and Y. Yang, “Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses,” Acta Mater., 121, 266-276 (2016).CrossRef
35.
Zurück zum Zitat R. T. Qu, M. Calin, J. Eckert, and Z. F. Zhang, “Metallic glasses: Notch-insensitive materials,” Scripta Mater., 66, No. 10, 733-736 (2012).CrossRef R. T. Qu, M. Calin, J. Eckert, and Z. F. Zhang, “Metallic glasses: Notch-insensitive materials,” Scripta Mater., 66, No. 10, 733-736 (2012).CrossRef
36.
Zurück zum Zitat S. Sinha, M. Komarasamy, T. H. Wang, R. S. Haridas, P. Agrawal, S. Shukla, S. Thapliyal, M. Frank, and R. S. Mishra, “Notch-tensile behavior of Al0.1CrFeCoNi high entropy alloy,” Mater. Sci. Eng. A, 774, 138918 (2020).CrossRef S. Sinha, M. Komarasamy, T. H. Wang, R. S. Haridas, P. Agrawal, S. Shukla, S. Thapliyal, M. Frank, and R. S. Mishra, “Notch-tensile behavior of Al0.1CrFeCoNi high entropy alloy,” Mater. Sci. Eng. A, 774, 138918 (2020).CrossRef
37.
Zurück zum Zitat D. M. Liu, S. F. Lin, S.F. Ge, Z.W. Zhu, H.M. Fu and H.F. Zhang, “A Ti-based bulk metallic glass composite with excellent tensile properties and significant work-hardening capacity,” Mater. Lett., 233, 107 (2018).CrossRef D. M. Liu, S. F. Lin, S.F. Ge, Z.W. Zhu, H.M. Fu and H.F. Zhang, “A Ti-based bulk metallic glass composite with excellent tensile properties and significant work-hardening capacity,” Mater. Lett., 233, 107 (2018).CrossRef
38.
Zurück zum Zitat T. Y. Yan, L. Zhang, R. L. Narayan, J. Y. Pang, Y. Wu, H. M. Fu, H. Li, H. F. Zhang, and U. Ramamurty, “Temperature-dependence of impact toughness of bulk metallic glass composites containing phase transformable β-Ti crystals,” Acta Mater., 229, 117827 (2022).CrossRef T. Y. Yan, L. Zhang, R. L. Narayan, J. Y. Pang, Y. Wu, H. M. Fu, H. Li, H. F. Zhang, and U. Ramamurty, “Temperature-dependence of impact toughness of bulk metallic glass composites containing phase transformable β-Ti crystals,” Acta Mater., 229, 117827 (2022).CrossRef
39.
Zurück zum Zitat L. Tian, R.L. Narayan, K. Zhou, R. Babicheva, U. Ramamurty, and Z. W. Shan, “A real-time TEM study of the deformation mechanisms in β-Ti reinforced bulk metallic glass composites,” Mater. Sci. Eng. A, 818, 141427 (2021).CrossRef L. Tian, R.L. Narayan, K. Zhou, R. Babicheva, U. Ramamurty, and Z. W. Shan, “A real-time TEM study of the deformation mechanisms in β-Ti reinforced bulk metallic glass composites,” Mater. Sci. Eng. A, 818, 141427 (2021).CrossRef
Metadaten
Titel
Strong and Tough Bulk Metallic Glass Composites Based on the Double-Network Concept
verfasst von
Y. Jiang
Y. Zhu
T. Li
X. Ding
Publikationsdatum
04.09.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 4/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10132-8

Weitere Artikel der Ausgabe 4/2023

Mechanics of Composite Materials 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.