Skip to main content
Erschienen in:

01.08.2022 | Original Paper

Strong metric dimension in annihilating-ideal graph of commutative rings

verfasst von: Mitra Jalali, Reza Nikandish

Erschienen in: Applicable Algebra in Engineering, Communication and Computing | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, using Gallai’s Theorem and the notion of strong resolving graph, we determine the strong metric dimension in annihilating-ideal graph of commutative rings. For reduced rings, an explicit formula is given and for non-reduced rings, under some conditions, strong metric dimension is computed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aalipour, G., Akbari, S., Nikandish, R., Nikmehr, M.J., Shaveisi, F.: On the coloring of the annihilating-ideal graph of a commutative ring. Discrete Math. 312, 2620–2626 (2012)MathSciNetCrossRef Aalipour, G., Akbari, S., Nikandish, R., Nikmehr, M.J., Shaveisi, F.: On the coloring of the annihilating-ideal graph of a commutative ring. Discrete Math. 312, 2620–2626 (2012)MathSciNetCrossRef
2.
Zurück zum Zitat Aalipour, G., Akbari, S., Nikandish, R., Nikmehr, M.J., Shaveisi, F.: Minimal prime ideals and cycles in annihilating-ideal graphs. Rocky Mt. J. Math. 43(5), 1415–1425 (2013)MathSciNetCrossRef Aalipour, G., Akbari, S., Nikandish, R., Nikmehr, M.J., Shaveisi, F.: Minimal prime ideals and cycles in annihilating-ideal graphs. Rocky Mt. J. Math. 43(5), 1415–1425 (2013)MathSciNetCrossRef
3.
Zurück zum Zitat Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217, 434–447 (1999)MathSciNetCrossRef Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217, 434–447 (1999)MathSciNetCrossRef
4.
Zurück zum Zitat Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Company, Boston (1969) Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Company, Boston (1969)
5.
Zurück zum Zitat Bailey, R.F., Cameron, P.J.: Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 43, 209–242 (2011)MathSciNetCrossRef Bailey, R.F., Cameron, P.J.: Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 43, 209–242 (2011)MathSciNetCrossRef
6.
7.
Zurück zum Zitat Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)MathSciNetCrossRef Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)MathSciNetCrossRef
8.
Zurück zum Zitat Curtis, A.R., Diesl, A.J., Rieck, J.C.: Classifying annihilating-ideal graph of commutative Artinian rings. Commun. Algebra 46, 4131–4147 (2018)MathSciNetCrossRef Curtis, A.R., Diesl, A.J., Rieck, J.C.: Classifying annihilating-ideal graph of commutative Artinian rings. Commun. Algebra 46, 4131–4147 (2018)MathSciNetCrossRef
9.
Zurück zum Zitat DeMeyer, L., Schneider, A.: The annihilating-ideal graph of commutative semigrops. J. Algebra 469, 402–420 (2017)MathSciNetCrossRef DeMeyer, L., Schneider, A.: The annihilating-ideal graph of commutative semigrops. J. Algebra 469, 402–420 (2017)MathSciNetCrossRef
10.
Zurück zum Zitat Dolžan, D.: The metric dimension of the total graph of a finite commutative ring. Can. Math. Bull. 59, 748–759 (2016)MathSciNetCrossRef Dolžan, D.: The metric dimension of the total graph of a finite commutative ring. Can. Math. Bull. 59, 748–759 (2016)MathSciNetCrossRef
11.
Zurück zum Zitat Dolžan, D.: The metric dimension of the annihilating-ideal graph of a finite commutative ring. Bull. Aust. Math. Soc. 103, 362–368 (2021)MathSciNetCrossRef Dolžan, D.: The metric dimension of the annihilating-ideal graph of a finite commutative ring. Bull. Aust. Math. Soc. 103, 362–368 (2021)MathSciNetCrossRef
12.
Zurück zum Zitat Ebrahimi, Sh., Nikandish, R., Tehranian, A., Rasouli, H.: On the strong metric dimension of annihilator graphs of commutative rings. Bull. Malays. Math. Sci. Soc. 44, 2507–2517 (2021)MathSciNetCrossRef Ebrahimi, Sh., Nikandish, R., Tehranian, A., Rasouli, H.: On the strong metric dimension of annihilator graphs of commutative rings. Bull. Malays. Math. Sci. Soc. 44, 2507–2517 (2021)MathSciNetCrossRef
13.
Zurück zum Zitat Harary, F., Melter, R.A.: On the metric dimension of a graph. ARS Combin. 2, 191–195 (1976)MathSciNet Harary, F., Melter, R.A.: On the metric dimension of a graph. ARS Combin. 2, 191–195 (1976)MathSciNet
14.
Zurück zum Zitat Imran Bhat, M., Pirzada, S.: On strong metric dimension of zero-divisor graphs of rings. Korean J. Math. 27, 563–580 (2019)MathSciNet Imran Bhat, M., Pirzada, S.: On strong metric dimension of zero-divisor graphs of rings. Korean J. Math. 27, 563–580 (2019)MathSciNet
15.
Zurück zum Zitat Khuller, S., Raghavachari, B., Rosenfeld, A.: Localization in graphs, Technical report CS-TR-3326, University of Maryland at College Park (1994) Khuller, S., Raghavachari, B., Rosenfeld, A.: Localization in graphs, Technical report CS-TR-3326, University of Maryland at College Park (1994)
16.
Zurück zum Zitat Kuziak, D., Yero, I.G., Rodrguez-Velzquez, J.A.: On the strong metric dimension of corona product graphs and join graphs. Discrete Appl. Math. 161, 1022–1027 (2013)MathSciNetCrossRef Kuziak, D., Yero, I.G., Rodrguez-Velzquez, J.A.: On the strong metric dimension of corona product graphs and join graphs. Discrete Appl. Math. 161, 1022–1027 (2013)MathSciNetCrossRef
17.
Zurück zum Zitat Kuziak, D., Yero, I.G., Rodrguez-Velquez, J.A.: On the strong metric dimension of the strong products of graphs. Open Math. 13, 64–74 (2015)MathSciNet Kuziak, D., Yero, I.G., Rodrguez-Velquez, J.A.: On the strong metric dimension of the strong products of graphs. Open Math. 13, 64–74 (2015)MathSciNet
19.
Zurück zum Zitat Nikandish, R., Nikmehr, M.J., Bakhtyiari, M.: Metric and strong metric dimension in cozero-divisor graphs. Mediterr. J. Math. 18, 112 (2021)MathSciNetCrossRef Nikandish, R., Nikmehr, M.J., Bakhtyiari, M.: Metric and strong metric dimension in cozero-divisor graphs. Mediterr. J. Math. 18, 112 (2021)MathSciNetCrossRef
20.
Zurück zum Zitat Nikandish, R., Maimani, H.R., Izanloo, H.: The annihilating-ideal graph \({\mathbb{Z} }_n\) is weakly perfect. Contrib. Discrete Math. 11(1), 16–21 (2016)MathSciNet Nikandish, R., Maimani, H.R., Izanloo, H.: The annihilating-ideal graph \({\mathbb{Z} }_n\) is weakly perfect. Contrib. Discrete Math. 11(1), 16–21 (2016)MathSciNet
21.
Zurück zum Zitat Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155, 356–364 (2007)MathSciNetCrossRef Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155, 356–364 (2007)MathSciNetCrossRef
22.
Zurück zum Zitat Parsapour, A., Javaheri, K.A.: When a line graph associated to annihilating-ideal graph of a lattice is planar or projective. Czech. Math. J. 68, 19–34 (2018)MathSciNetCrossRef Parsapour, A., Javaheri, K.A.: When a line graph associated to annihilating-ideal graph of a lattice is planar or projective. Czech. Math. J. 68, 19–34 (2018)MathSciNetCrossRef
23.
Zurück zum Zitat Pirzada, S., Raja, R.: On the metric dimension of a zero-divisor graph. Commun. Algebra 45(4), 1399–1408 (2017)MathSciNetCrossRef Pirzada, S., Raja, R.: On the metric dimension of a zero-divisor graph. Commun. Algebra 45(4), 1399–1408 (2017)MathSciNetCrossRef
24.
Zurück zum Zitat Raja, R., Pirzada, S., Redmond, S.P.: On Locating numbers and codes of zero-divisor graphs associated with commutative rings. J. Algebra Appl. 15(1), 1650014 (2016)MathSciNetCrossRef Raja, R., Pirzada, S., Redmond, S.P.: On Locating numbers and codes of zero-divisor graphs associated with commutative rings. J. Algebra Appl. 15(1), 1650014 (2016)MathSciNetCrossRef
26.
Zurück zum Zitat West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001) West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)
27.
Zurück zum Zitat Yu, H.Y., Wu, T.: Commutative rings R whose \(C({\mathbb{A}}{\mathbb{G}} (R))\) consists only of triangles. Commun. Algebra 43, 1076–1097 (2015)MathSciNetCrossRef Yu, H.Y., Wu, T.: Commutative rings R whose \(C({\mathbb{A}}{\mathbb{G}} (R))\) consists only of triangles. Commun. Algebra 43, 1076–1097 (2015)MathSciNetCrossRef
Metadaten
Titel
Strong metric dimension in annihilating-ideal graph of commutative rings
verfasst von
Mitra Jalali
Reza Nikandish
Publikationsdatum
01.08.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing / Ausgabe 5/2024
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-022-00574-3