Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2019 | APPLIED PROBLEMS | Ausgabe 4/2019

Pattern Recognition and Image Analysis 4/2019

Strong-Structural Convolution Neural Network for Semantic Segmentation

Zeitschrift:
Pattern Recognition and Image Analysis > Ausgabe 4/2019
Autor:
Yi Ouyang
Wichtige Hinweise
https://static-content.springer.com/image/art%3A10.1134%2FS1054661819040126/MediaObjects/11493_2019_6038_Fig7_HTML.gif
Ouyang Yi, He is an Assistant Professor in Zhejiang Gongshang University. He received his Doctors Degree of Engineering Computer Science and Technology from College of Computer Science and Technology, Zhejiang University in 2012. He is majoring in Image Processing, Pattern Recognition and Object tracking.

Abstract

We present a combinatorial deep convolutional neural network architecture, termed strong convolution neural network (SSN), for semantic segmentation task. The structure of SSN consists of two components: Increment feature convolution neural network and post-process Conditional Random Fields unit (CRFs). The increment feature CNN unit has three parts: I-Block, Deconvolution layer and Transition Block. I-Block employs increment convolution to efficiently maintain feature information. Before passing through pooling layer, we put the feature map into activate layer ReLU, and batch normalization layer. In Decoding stage, we use skip-connects to keep the pooling index information. To enforce the correlation of same semantic labels, we define the strong semantic label (SSL) stage to intensify the pairwise potential energy. To achieve high computation performance, we make further improvement on SSL by employing the adaptive soft semantic sections label method. We proposed the adaptive strong semantic label selection algorithm to generate the SSL. Through the CRFs unit, with unitary energy and pairwise edge energy, the semantic segmentation initial labels transform semantic segmentation labels. Experimental evaluation reveals the training time versus accuracy trade-off involved in achieving good segmentation performance.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

Pattern Recognition and Image Analysis 4/2019 Zur Ausgabe

Premium Partner

    Bildnachweise