Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2018

26.09.2017

Structural analysis of graphene oxide/silver nanocomposites: optical properties, electrochemical sensing and photocatalytic activity

verfasst von: Manish Kumar, Unni Krishnan, Pooja Devi, Akshay Kumar

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, graphene oxide/silver (GO/Ag) nanocomposites were synthesized via a facile simple one pot chemical reduction method using ethylene glycol/sodium borohydrate (EG/NaBH4) as solvent and reducing agent. GO was selected as a substrate and stabilizer to prepare GO/Ag nanocomposites. The synthesized GO/Ag nanocomposites were characterized by a series of techniques. Highly monodispersed stable crystalline silver nanoparticles having a face-centered cubic (fcc) phase were confirmed by X-ray powder diffraction (XRD) on GO signature. Scanning electron microscopy images showed that Ag nanoparticles are deposited on the GO sheet with a narrow size distribution. Transmission electron microscopy observations revealed that large numbers of Ag nanoparticles were uniformly distributed on GO sheet and well separated with an average size of 18 nm. Ultraviolet–visible (UV–Vis) spectroscopic results showed the peak of GO and surface plasmon resonance (SPR) of Ag nanoparticles. The SPR property of GO/Ag nanocomposites showed that there was an interaction between Ag nanoparticles and GO sheet. The intensities of the Raman signal of GO/Ag nanocomposites are gradually increased with attachment of Ag nanoparticles i.e. there is surface-enhanced Raman scattering activity. Electrochemical investigations indicated that the nanocomposites possessed an excellent performance for detecting towards 4-nitrophenol. An application of the obtained GO/Ag nanocomposites as a catalyst in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4 was demonstrated. The GO/Ag nanocomposites exhibited high activity and stability for the catalytic reduction of 4-nitrophenol. The prepared GO/Ag nanocomposites act as photo-catalysts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Feng, Y. Zhang, J. Zhou, Y. Li, S. Chen, L. Zhang, Y. Ma, L. Wang, X. Yan, Three dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7, 2427–2432 (2015)CrossRef X. Feng, Y. Zhang, J. Zhou, Y. Li, S. Chen, L. Zhang, Y. Ma, L. Wang, X. Yan, Three dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7, 2427–2432 (2015)CrossRef
2.
Zurück zum Zitat C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength ofmonolayer graphene. Science 321, 385–388 (2008)CrossRef C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength ofmonolayer graphene. Science 321, 385–388 (2008)CrossRef
3.
Zurück zum Zitat A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef
4.
Zurück zum Zitat X. Feng, Y. Zhang, J. Song, N. Chen, J. Zhou, Z. Huang, Y. Ma, L. Zhang, L. Wang, MnO2/Graphene nanocomposites for nonenzymatic electrochemical detection of hydrogen peroxide. Electroanalysis 27, 353–359 (2015)CrossRef X. Feng, Y. Zhang, J. Song, N. Chen, J. Zhou, Z. Huang, Y. Ma, L. Zhang, L. Wang, MnO2/Graphene nanocomposites for nonenzymatic electrochemical detection of hydrogen peroxide. Electroanalysis 27, 353–359 (2015)CrossRef
5.
Zurück zum Zitat K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi, E. Jaehne, The route to functional graphene oxide. Chem. Phys. Chem. 11, 2131–2139 (2010)CrossRef K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi, E. Jaehne, The route to functional graphene oxide. Chem. Phys. Chem. 11, 2131–2139 (2010)CrossRef
6.
Zurück zum Zitat R. Pasricha, S. Gupta, A.G. Joshi, N. Bahadur, K.N. Sood, S. Singh, Directed nanoparticles reduction on graphene. Mater. Today 15, 118–125 (2012)CrossRef R. Pasricha, S. Gupta, A.G. Joshi, N. Bahadur, K.N. Sood, S. Singh, Directed nanoparticles reduction on graphene. Mater. Today 15, 118–125 (2012)CrossRef
7.
Zurück zum Zitat H.P. Cong, J.J. He, Y. Lu, S.H. Yu, Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 6, 169–173 (2010)CrossRef H.P. Cong, J.J. He, Y. Lu, S.H. Yu, Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 6, 169–173 (2010)CrossRef
8.
Zurück zum Zitat M. Heidarizad, S.S. Sengor, Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. J. Mol. Liq. 224, 607–617 (2016)CrossRef M. Heidarizad, S.S. Sengor, Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. J. Mol. Liq. 224, 607–617 (2016)CrossRef
9.
Zurück zum Zitat N. Kumar, A.K. Srivastava, H.S. Patel, B.K. Gupta, G.D. Varma, Facile synthesis of ZnO–reduced graphene oxide nanocomposites for NO2 gas sensing applications. Eur. J. Inorg. Chem. 11, 1912–1923 (2015)CrossRef N. Kumar, A.K. Srivastava, H.S. Patel, B.K. Gupta, G.D. Varma, Facile synthesis of ZnO–reduced graphene oxide nanocomposites for NO2 gas sensing applications. Eur. J. Inorg. Chem. 11, 1912–1923 (2015)CrossRef
10.
Zurück zum Zitat H.L. Jun, W.Y. Xin, T.J. Guo, W. Yao, L.J. Xian, J.J. Qing, W. We, Preparation of graphene/silver nanohybrid composite with good surface-enhanced Raman scattering characteristics. Int. J. Electrochem. Sci. 11, 398–405 (2016) H.L. Jun, W.Y. Xin, T.J. Guo, W. Yao, L.J. Xian, J.J. Qing, W. We, Preparation of graphene/silver nanohybrid composite with good surface-enhanced Raman scattering characteristics. Int. J. Electrochem. Sci. 11, 398–405 (2016)
11.
Zurück zum Zitat R. Fu, M. Zhu, Synthesis and characterization of structure of Fe3O4@graphene oxide nanocomposites. Adv. Comp. Lett. 25, 143–146 (2016) R. Fu, M. Zhu, Synthesis and characterization of structure of Fe3O4@graphene oxide nanocomposites. Adv. Comp. Lett. 25, 143–146 (2016)
12.
Zurück zum Zitat J. Xie, X. Yang, X. Xu, C. Yang, Microwave synthesis of reduced graphene oxide-supported platinum nanocomposite with high electrocatalytic activity for methanol oxidation. Int. J. Electrochem. Sci. 12, 466–474 (2017)CrossRef J. Xie, X. Yang, X. Xu, C. Yang, Microwave synthesis of reduced graphene oxide-supported platinum nanocomposite with high electrocatalytic activity for methanol oxidation. Int. J. Electrochem. Sci. 12, 466–474 (2017)CrossRef
13.
Zurück zum Zitat Y.Z. Zhou, J. Yang, X. Cheng, N. Zhao, H. Suna, D. Li, Transparent and conductive reduced graphene oxide/silver nanoparticles multilayer film obtained by electrical self-assembly process with graphene oxide sheets and silver colloid. RSC Adv. 3, 3391–3398 (2013)CrossRef Y.Z. Zhou, J. Yang, X. Cheng, N. Zhao, H. Suna, D. Li, Transparent and conductive reduced graphene oxide/silver nanoparticles multilayer film obtained by electrical self-assembly process with graphene oxide sheets and silver colloid. RSC Adv. 3, 3391–3398 (2013)CrossRef
14.
Zurück zum Zitat Y.L. Shao, Y. Shao, H. Wang, Q. Zhang, Y. Li, High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J. Mater. Chem. C 1, 1245–1251 (2013)CrossRef Y.L. Shao, Y. Shao, H. Wang, Q. Zhang, Y. Li, High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J. Mater. Chem. C 1, 1245–1251 (2013)CrossRef
15.
Zurück zum Zitat K.C. Hsu, D.H. Chen, Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite. Nanoscale Res. Lett. 9, 484 (2014)CrossRef K.C. Hsu, D.H. Chen, Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite. Nanoscale Res. Lett. 9, 484 (2014)CrossRef
16.
Zurück zum Zitat Q. Li, X. Qin, Y. Luo, W. Lu, G. Chang, A.M. Asiri, A.O. Al-Youbi, X. Sun, One-pot synthesis of Ag nanoparticles/reduced graphene oxide nanocomposites and their application for nonenzymatic H2O2 detection. Electrochim. Acta 83, 283–287 (2012)CrossRef Q. Li, X. Qin, Y. Luo, W. Lu, G. Chang, A.M. Asiri, A.O. Al-Youbi, X. Sun, One-pot synthesis of Ag nanoparticles/reduced graphene oxide nanocomposites and their application for nonenzymatic H2O2 detection. Electrochim. Acta 83, 283–287 (2012)CrossRef
17.
Zurück zum Zitat M. Zainy, N.M. Huang, S.V. Kumar, H.N. Lim, C.H. Chia, I. Harrison, Simple and scalable preparation of reduced graphene oxide-silver nanocomposites via rapid thermal treatment. Mater. Lett. 89, 180–183 (2012)CrossRef M. Zainy, N.M. Huang, S.V. Kumar, H.N. Lim, C.H. Chia, I. Harrison, Simple and scalable preparation of reduced graphene oxide-silver nanocomposites via rapid thermal treatment. Mater. Lett. 89, 180–183 (2012)CrossRef
18.
Zurück zum Zitat A.M. Golsheikh, N.M. Huang, H.N. Lim, R. Zakaria, C.Y. Yin, One-step electrodeposition synthesis of silver nanoparticles decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon 62, 405–412 (2013)CrossRef A.M. Golsheikh, N.M. Huang, H.N. Lim, R. Zakaria, C.Y. Yin, One-step electrodeposition synthesis of silver nanoparticles decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon 62, 405–412 (2013)CrossRef
19.
Zurück zum Zitat L. Liu, J.C. Liu, Y.J. Wang, X.L. Yan, D.D. Sun, Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J. Chem. 35, 1418–1423 (2011)CrossRef L. Liu, J.C. Liu, Y.J. Wang, X.L. Yan, D.D. Sun, Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J. Chem. 35, 1418–1423 (2011)CrossRef
20.
Zurück zum Zitat L. Fu, Y. Zheng, Z. Wang, A. Wang, B. Dengand, F. Peng, Facile synthesis of Ag-AgCl/ZnO hybrid with high efficiency photocatalytic property under visible light. Dig. J. Nanomater. Biostruct. 10, 117–124 (2015) L. Fu, Y. Zheng, Z. Wang, A. Wang, B. Dengand, F. Peng, Facile synthesis of Ag-AgCl/ZnO hybrid with high efficiency photocatalytic property under visible light. Dig. J. Nanomater. Biostruct. 10, 117–124 (2015)
21.
Zurück zum Zitat A. Niaziand, A. Yazdanipour, Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares. J. Hazard. Mater. 146, 421–427 (2007)CrossRef A. Niaziand, A. Yazdanipour, Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares. J. Hazard. Mater. 146, 421–427 (2007)CrossRef
22.
Zurück zum Zitat C. Nistor, A. Oubiña, M.P. Marco, D. Barceló, J. Emnéus, Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Anal. Chim. Acta 426, 185–195 (2001)CrossRef C. Nistor, A. Oubiña, M.P. Marco, D. Barceló, J. Emnéus, Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Anal. Chim. Acta 426, 185–195 (2001)CrossRef
23.
Zurück zum Zitat E. Dorta, M. González, M.G. Lobo, C. Sánchez-Moreno, B.D. Ancos, Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Res. Int. 57, 51–60 (2014)CrossRef E. Dorta, M. González, M.G. Lobo, C. Sánchez-Moreno, B.D. Ancos, Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Res. Int. 57, 51–60 (2014)CrossRef
24.
Zurück zum Zitat L. Fu, Y.H. Zheng, Z.X. Fu, Ascorbic acid amperometric sensor using a graphene-wrapped hierarchical TiO2 nanocomposite. Chem. Pap. 69, 655–661 (2015)CrossRef L. Fu, Y.H. Zheng, Z.X. Fu, Ascorbic acid amperometric sensor using a graphene-wrapped hierarchical TiO2 nanocomposite. Chem. Pap. 69, 655–661 (2015)CrossRef
25.
Zurück zum Zitat E. Salih, M. Mekawy, R.Y.A. Hassan, I.M. El-Sherbiny, Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. J. Nanostruct. Chem. 6, 137–144 (2016)CrossRef E. Salih, M. Mekawy, R.Y.A. Hassan, I.M. El-Sherbiny, Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. J. Nanostruct. Chem. 6, 137–144 (2016)CrossRef
26.
Zurück zum Zitat G. Yang, One-pot preparation of reduced graphene oxide/silver nanocomposite and its application in the electrochemical determination of 4-nitrophenol. Int. J. Electrochem. Sci. 10, 9632–9640 (2015) G. Yang, One-pot preparation of reduced graphene oxide/silver nanocomposite and its application in the electrochemical determination of 4-nitrophenol. Int. J. Electrochem. Sci. 10, 9632–9640 (2015)
27.
Zurück zum Zitat D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, B.A. Lawrence, W. Lu, M. James. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRef D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, B.A. Lawrence, W. Lu, M. James. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRef
28.
Zurück zum Zitat S. Singh, N. Kumar, M. Kumar, A. Agarwal, B. Mizaikoff, Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem. Eng. J. 313, 283–292 (2017)CrossRef S. Singh, N. Kumar, M. Kumar, A. Agarwal, B. Mizaikoff, Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem. Eng. J. 313, 283–292 (2017)CrossRef
29.
Zurück zum Zitat M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M.H. Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)CrossRef M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M.H. Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)CrossRef
30.
Zurück zum Zitat K.T. Jeng, C.C. Chien, N.Y. Hsu, S.C. Yen, S.D. Chiou, S.H. Lin, W.M. Huang, Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition. J. Power Sources 160, 97–104 (2006)CrossRef K.T. Jeng, C.C. Chien, N.Y. Hsu, S.C. Yen, S.D. Chiou, S.H. Lin, W.M. Huang, Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition. J. Power Sources 160, 97–104 (2006)CrossRef
31.
Zurück zum Zitat W.Z. Li, C.H. Liang, W.J. Zhou, J.S. Qiu, H.Q. Li, G.Q. Sun, Q. Xin, Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon 42, 436–439 (2004)CrossRef W.Z. Li, C.H. Liang, W.J. Zhou, J.S. Qiu, H.Q. Li, G.Q. Sun, Q. Xin, Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon 42, 436–439 (2004)CrossRef
32.
Zurück zum Zitat W. Yuan, Y. Gu, L. Li, Green synthesis of graphene/Ag nanocomposites. Appl. Surf. Sci. 261, 753–758 (2012)CrossRef W. Yuan, Y. Gu, L. Li, Green synthesis of graphene/Ag nanocomposites. Appl. Surf. Sci. 261, 753–758 (2012)CrossRef
33.
Zurück zum Zitat M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke, P. Sengupta, Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf. B 83, 16–22 (2011)CrossRef M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke, P. Sengupta, Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf. B 83, 16–22 (2011)CrossRef
34.
Zurück zum Zitat M.G. Naseri, E. Saion, N.K. Zadeh, The amazing effects and role of PVP on the crystallinity, phase composition and morphology of nickel ferrite nanoparticles prepared by thermal treatment method. Int. Nano Lett. 3, 1–8 (2013)CrossRef M.G. Naseri, E. Saion, N.K. Zadeh, The amazing effects and role of PVP on the crystallinity, phase composition and morphology of nickel ferrite nanoparticles prepared by thermal treatment method. Int. Nano Lett. 3, 1–8 (2013)CrossRef
35.
Zurück zum Zitat M. Kumar, P. Devi, A. Kumar, Structural analysis of PVP capped silver nanoparticles synthesized at room temperature for optical, electrical & gas sensing properties. J. Mater. Sci. 28, 5014–5020 (2017) M. Kumar, P. Devi, A. Kumar, Structural analysis of PVP capped silver nanoparticles synthesized at room temperature for optical, electrical & gas sensing properties. J. Mater. Sci. 28, 5014–5020 (2017)
36.
Zurück zum Zitat R.V. Hull, L. Li, Y.C. Xing, C.C. Chusuei, Pt nanoparticles binding on funtionalized multiwalled carbon nanotubes. Chem. Mater. 18, 1780–1788 (2006)CrossRef R.V. Hull, L. Li, Y.C. Xing, C.C. Chusuei, Pt nanoparticles binding on funtionalized multiwalled carbon nanotubes. Chem. Mater. 18, 1780–1788 (2006)CrossRef
37.
Zurück zum Zitat Y. Zhou, J. Yang, X. Cheng, N. Zhao, L. Sun, H. Sun, D. Li, Electrostatic self assembly of graphene-silver multilayer films and their transmittance and electronic conductivity. Carbon 50, 4343–4350 (2012)CrossRef Y. Zhou, J. Yang, X. Cheng, N. Zhao, L. Sun, H. Sun, D. Li, Electrostatic self assembly of graphene-silver multilayer films and their transmittance and electronic conductivity. Carbon 50, 4343–4350 (2012)CrossRef
38.
Zurück zum Zitat J.C. Meyer, A.K. Geim, M. Katsnelson, K. Novoselov, T. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRef J.C. Meyer, A.K. Geim, M. Katsnelson, K. Novoselov, T. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRef
39.
Zurück zum Zitat L. Huang, H. Yang, Y. Zhang, W. Xiao, Study on synthesis and antibacterial properties of Ag NPs/GO nanocomposites. J. Nanomater. 1–9 (2016) Article ID 5685967 L. Huang, H. Yang, Y. Zhang, W. Xiao, Study on synthesis and antibacterial properties of Ag NPs/GO nanocomposites. J. Nanomater. 1–9 (2016) Article ID 5685967
40.
Zurück zum Zitat S.J. Wang, Y.W. Zhang, H.L. Ma, Q.L. Zhang, M.L. Zhai, Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 55, 245–252 (2013)CrossRef S.J. Wang, Y.W. Zhang, H.L. Ma, Q.L. Zhang, M.L. Zhai, Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 55, 245–252 (2013)CrossRef
41.
Zurück zum Zitat K.D. Kim, D.N. Han, H.T. Kim, Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method. Chem. Eng. J. 104, 55–61 (2005)CrossRef K.D. Kim, D.N. Han, H.T. Kim, Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method. Chem. Eng. J. 104, 55–61 (2005)CrossRef
42.
Zurück zum Zitat R.A. Dar, N.G. Khare, D.P. Cole, S.P. Karna, A.K. Srivastava, Green synthesis of a silver nanoparticles-graphene oxide composite and its application for As (lll) detection. RSC Adv. 4, 14432–14440 (2014)CrossRef R.A. Dar, N.G. Khare, D.P. Cole, S.P. Karna, A.K. Srivastava, Green synthesis of a silver nanoparticles-graphene oxide composite and its application for As (lll) detection. RSC Adv. 4, 14432–14440 (2014)CrossRef
43.
Zurück zum Zitat J. Li, D. Kuang, F. Zhang, Z. Xu, M. Liu, D. Wang, Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosens. Bioelectron. 42, 198–206 (2013)CrossRef J. Li, D. Kuang, F. Zhang, Z. Xu, M. Liu, D. Wang, Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosens. Bioelectron. 42, 198–206 (2013)CrossRef
44.
Zurück zum Zitat M. Welch, R. Christine, G. Compton, The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem. 3, 601–619 (2006)CrossRef M. Welch, R. Christine, G. Compton, The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem. 3, 601–619 (2006)CrossRef
45.
Zurück zum Zitat J. Li, C.Y. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430 (2012)CrossRef J. Li, C.Y. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430 (2012)CrossRef
46.
Zurück zum Zitat Y. Li, Y. Cao, J. Xie, D. Jia, H. Qin, Z. Liang, Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catal. Commun. 58, 21–25 (2015)CrossRef Y. Li, Y. Cao, J. Xie, D. Jia, H. Qin, Z. Liang, Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catal. Commun. 58, 21–25 (2015)CrossRef
47.
Zurück zum Zitat M.F. Merino, L. Guardia, J. Paredes, S.V. Rodil, A.M. Alonso, J. Tascon, Developing green photochemical approaches towards the synthesis of carbon nanofiber- and graphene-supported silver nanoparticles and their use in the catalytic reduction of 4-nitrophenol. RSC Adv. 3, 18323–18331 (2013)CrossRef M.F. Merino, L. Guardia, J. Paredes, S.V. Rodil, A.M. Alonso, J. Tascon, Developing green photochemical approaches towards the synthesis of carbon nanofiber- and graphene-supported silver nanoparticles and their use in the catalytic reduction of 4-nitrophenol. RSC Adv. 3, 18323–18331 (2013)CrossRef
48.
Zurück zum Zitat Y. Wan, Y. Wang, J. Wu, D. Zhang, Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors. Anal. Chem. 83, 648–653 (2010)CrossRef Y. Wan, Y. Wang, J. Wu, D. Zhang, Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors. Anal. Chem. 83, 648–653 (2010)CrossRef
Metadaten
Titel
Structural analysis of graphene oxide/silver nanocomposites: optical properties, electrochemical sensing and photocatalytic activity
verfasst von
Manish Kumar
Unni Krishnan
Pooja Devi
Akshay Kumar
Publikationsdatum
26.09.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7881-7

Weitere Artikel der Ausgabe 1/2018

Journal of Materials Science: Materials in Electronics 1/2018 Zur Ausgabe

Neuer Inhalt