Skip to main content
Erschienen in:

04.04.2022 | Original Article

Structural analysis of nonlocal nanobeam via FEM using equivalent nonlocal differential model

verfasst von: Pei-Liang Bian, Hai Qing

Erschienen in: Engineering with Computers | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, we developed a new FEM framework to simulate the mechanical responses of the Euler–Bernoulli beam with a two-phase local/nonlocal mixed model. The shape function is a fifth-order polynomial and constitutive boundary conditions (CBCs) are treated as external loads. The main advantages of the present model are the efficient of convergence, simplicity of expressions, and the flexibility on handling various boundary conditions as well as the external loads. Several numerical tests, including static bending, free vibration, and elastic bulking, are carried out to validate the FEM framework. The results showed the complete agreement with the exact solution from Laplace transformation and indicated a simple and reliable scheme to deal with complicated nanosystems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Shankar R, Ghosh TK, Spontak RJ (2007) Electroactive nanostructured polymers as tunable actuators. Adv Mater 19(17):2218–2223CrossRef Shankar R, Ghosh TK, Spontak RJ (2007) Electroactive nanostructured polymers as tunable actuators. Adv Mater 19(17):2218–2223CrossRef
2.
Zurück zum Zitat Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, Dietler G, Kasas S (2013) Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol 8(7):522–526CrossRef Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, Dietler G, Kasas S (2013) Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol 8(7):522–526CrossRef
3.
Zurück zum Zitat Chortos A, Koleilat GI, Pfattner R, Kong D, Lin P, Nur R, Lei T, Wang H, Liu N, Lai YC et al (2016) Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater 28(22):4441–4448CrossRef Chortos A, Koleilat GI, Pfattner R, Kong D, Lin P, Nur R, Lei T, Wang H, Liu N, Lai YC et al (2016) Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater 28(22):4441–4448CrossRef
4.
Zurück zum Zitat Lee BH, Moon DI, Jang H, Kim CH, Seol ML, Choi JM, Lee DI, Kim MW, Yoon JB, Choi YK (2014) A mechanical and electrical transistor structure (mets) with a sub-2 nm nanogap for effective voltage scaling. Nanoscale 6(14):7799–7804CrossRef Lee BH, Moon DI, Jang H, Kim CH, Seol ML, Choi JM, Lee DI, Kim MW, Yoon JB, Choi YK (2014) A mechanical and electrical transistor structure (mets) with a sub-2 nm nanogap for effective voltage scaling. Nanoscale 6(14):7799–7804CrossRef
5.
Zurück zum Zitat Cheng B, Yang S, Woldu YT, Shafique S, Wang F (2020) A study on the mechanical properties of a carbon nanotube probe with a high aspect ratio. Nanotechnology 31(14):145707CrossRef Cheng B, Yang S, Woldu YT, Shafique S, Wang F (2020) A study on the mechanical properties of a carbon nanotube probe with a high aspect ratio. Nanotechnology 31(14):145707CrossRef
8.
Zurück zum Zitat Tian X, Sladek J, Sladek V, Deng Q, Li Q (2021) A collocation mixed finite element method for the analysis of flexoelectric solids. International Journal of Solids and Structures 217:27–39 Tian X, Sladek J, Sladek V, Deng Q, Li Q (2021) A collocation mixed finite element method for the analysis of flexoelectric solids. International Journal of Solids and Structures 217:27–39
9.
Zurück zum Zitat Sladek J, Sladek V, Hosseini SM (2021) Analysis of a curved timoshenko nano-beam with flexoelectricity. Acta Mechanica 232(4):1563–1581 Sladek J, Sladek V, Hosseini SM (2021) Analysis of a curved timoshenko nano-beam with flexoelectricity. Acta Mechanica 232(4):1563–1581
10.
Zurück zum Zitat Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10(5):425–435CrossRefMATH Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10(5):425–435CrossRefMATH
12.
Zurück zum Zitat Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710CrossRef Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710CrossRef
13.
Zurück zum Zitat Zhang P, Qing H (2021) Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Compos Struct 265:113770CrossRef Zhang P, Qing H (2021) Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Compos Struct 265:113770CrossRef
14.
Zurück zum Zitat Tuna M, Kirca M (2017) Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method. Compos Struct 179:269–284CrossRef Tuna M, Kirca M (2017) Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method. Compos Struct 179:269–284CrossRef
15.
Zurück zum Zitat Romano G, Barretta R (2017) Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos Part B Eng 114:184–188CrossRef Romano G, Barretta R (2017) Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos Part B Eng 114:184–188CrossRef
17.
Zurück zum Zitat Ghosh S, Sundararaghavan V, Waas AM (2014) Construction of multi-dimensional isotropic Kernels for nonlocal elasticity based on phonon dispersion data. Int J Solids Struct 51(2):392–401CrossRef Ghosh S, Sundararaghavan V, Waas AM (2014) Construction of multi-dimensional isotropic Kernels for nonlocal elasticity based on phonon dispersion data. Int J Solids Struct 51(2):392–401CrossRef
18.
Zurück zum Zitat Lazar M, Maugin GA, Aifantis EC (2006) On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int J Solids Struct 43(6):1404–1421MathSciNetCrossRefMATH Lazar M, Maugin GA, Aifantis EC (2006) On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int J Solids Struct 43(6):1404–1421MathSciNetCrossRefMATH
19.
Zurück zum Zitat Romano G, Barretta R, Diaco M (2017) On nonlocal integral models for elastic nano-beams. Int J Mech Sci 131:490–499CrossRef Romano G, Barretta R, Diaco M (2017) On nonlocal integral models for elastic nano-beams. Int J Mech Sci 131:490–499CrossRef
20.
Zurück zum Zitat Wang Y, Zhu X, Dai H (2016) Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv 6(8):085114CrossRef Wang Y, Zhu X, Dai H (2016) Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv 6(8):085114CrossRef
21.
Zurück zum Zitat Wang Y, Huang K, Zhu X, Lou Z (2019) Exact solutions for the bending of Timoshenko beams using Eringen’s two-phase nonlocal model. Math Mech Solids 24(3):559–572MathSciNetCrossRefMATH Wang Y, Huang K, Zhu X, Lou Z (2019) Exact solutions for the bending of Timoshenko beams using Eringen’s two-phase nonlocal model. Math Mech Solids 24(3):559–572MathSciNetCrossRefMATH
22.
Zurück zum Zitat Zhang P, Qing H, Gao C (2019) Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen’s nonlocal integral mixed model. J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 99(8):e201800329MathSciNet Zhang P, Qing H, Gao C (2019) Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen’s nonlocal integral mixed model. J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 99(8):e201800329MathSciNet
23.
Zurück zum Zitat Zhang P, Qing H, Gao CF (2020) Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two-phase local/nonlocal integral model. J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 100(7):e201900207MathSciNet Zhang P, Qing H, Gao CF (2020) Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two-phase local/nonlocal integral model. J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 100(7):e201900207MathSciNet
24.
Zurück zum Zitat Fernández-Sáez J, Zaera R (2017) Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. Int J Eng Sci 119:232–248MathSciNetCrossRefMATH Fernández-Sáez J, Zaera R (2017) Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. Int J Eng Sci 119:232–248MathSciNetCrossRefMATH
25.
Zurück zum Zitat Zhu X, Wang Y, Dai HH (2017) Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model. Int J Eng Sci 116:130–140MathSciNetCrossRefMATH Zhu X, Wang Y, Dai HH (2017) Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model. Int J Eng Sci 116:130–140MathSciNetCrossRefMATH
26.
Zurück zum Zitat Khaniki HB (2018) Vibration analysis of rotating nanobeam systems using Eringen’s two-phase local/nonlocal model. Phys E Low Dimens Syst Nanostruct 99:310–319CrossRef Khaniki HB (2018) Vibration analysis of rotating nanobeam systems using Eringen’s two-phase local/nonlocal model. Phys E Low Dimens Syst Nanostruct 99:310–319CrossRef
29.
Zurück zum Zitat Fakher M, Hosseini-Hashemi S (2020) Nonlinear vibration analysis of two-phase local/nonlocal nanobeams with size-dependent nonlinearity by using Galerkin method. J Vib Control 27:378–391MathSciNetCrossRef Fakher M, Hosseini-Hashemi S (2020) Nonlinear vibration analysis of two-phase local/nonlocal nanobeams with size-dependent nonlinearity by using Galerkin method. J Vib Control 27:378–391MathSciNetCrossRef
30.
Zurück zum Zitat Sahmani S, Fattahi A, Ahmed N (2019) Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with gpl. Eng Comput 36:1–20 Sahmani S, Fattahi A, Ahmed N (2019) Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with gpl. Eng Comput 36:1–20
31.
Zurück zum Zitat Wang X, Zhou G et al (2021) Static and free vibration analysis of thin arbitrary-shaped triangular plates under various boundary and internal supports. Thin Walled Struct 162:107592CrossRef Wang X, Zhou G et al (2021) Static and free vibration analysis of thin arbitrary-shaped triangular plates under various boundary and internal supports. Thin Walled Struct 162:107592CrossRef
32.
Zurück zum Zitat Bathe KJ (2006) Finite element procedures. Klaus-Jurgen Bathe, BerlinMATH Bathe KJ (2006) Finite element procedures. Klaus-Jurgen Bathe, BerlinMATH
33.
Zurück zum Zitat Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, AmsterdamMATH Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, AmsterdamMATH
34.
Zurück zum Zitat Norouzzadeh A, Ansari R (2017) Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Phys E Low Dimens Syst Nanostruct 88:194–200CrossRef Norouzzadeh A, Ansari R (2017) Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Phys E Low Dimens Syst Nanostruct 88:194–200CrossRef
35.
Zurück zum Zitat Eptaimeros K, Koutsoumaris CC, Tsamasphyros G (2016) Nonlocal integral approach to the dynamical response of nanobeams. Int J Mech Sci 115:68–80CrossRef Eptaimeros K, Koutsoumaris CC, Tsamasphyros G (2016) Nonlocal integral approach to the dynamical response of nanobeams. Int J Mech Sci 115:68–80CrossRef
36.
Zurück zum Zitat Taghizadeh M, Ovesy H, Ghannadpour S (2016) Beam buckling analysis by nonlocal integral elasticity finite element method. Int J Struct Stab Dyn 16(06):1550015MathSciNetCrossRefMATH Taghizadeh M, Ovesy H, Ghannadpour S (2016) Beam buckling analysis by nonlocal integral elasticity finite element method. Int J Struct Stab Dyn 16(06):1550015MathSciNetCrossRefMATH
37.
Zurück zum Zitat Merzouki T, Houari MSA, Haboussi M, Bessaim A, Ganapathi M (2020) Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory. Eng Comput 1–19 Merzouki T, Houari MSA, Haboussi M, Bessaim A, Ganapathi M (2020) Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory. Eng Comput 1–19
38.
Zurück zum Zitat Phung-Van P, Thai CH (2021) A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates. Eng Comput 1–14 Phung-Van P, Thai CH (2021) A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates. Eng Comput 1–14
39.
Zurück zum Zitat Pradhan S (2012) Nonlocal finite element analysis and small scale effects of CNTS with Timoshenko beam theory. Finite Elements Anal Des 50:8–20CrossRef Pradhan S (2012) Nonlocal finite element analysis and small scale effects of CNTS with Timoshenko beam theory. Finite Elements Anal Des 50:8–20CrossRef
40.
Zurück zum Zitat Phadikar J, Pradhan S (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49(3):492–499CrossRef Phadikar J, Pradhan S (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49(3):492–499CrossRef
41.
Zurück zum Zitat Tran VK, Pham QH, Nguyen-Thoi T (2020) A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Eng Comput 1–26 Tran VK, Pham QH, Nguyen-Thoi T (2020) A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Eng Comput 1–26
42.
Zurück zum Zitat Thai HT, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science 54:58–66 Thai HT, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science 54:58–66
43.
Zurück zum Zitat Safeer M, Khadimallah MA, Taj M, Hussain M, Elaloui E, Touns A (2021) Strength performance with buckling analysis of intermediate filaments by consideration nonlocal parameters. Computers and Concrete 28(1):69–75 Safeer M, Khadimallah MA, Taj M, Hussain M, Elaloui E, Touns A (2021) Strength performance with buckling analysis of intermediate filaments by consideration nonlocal parameters. Computers and Concrete 28(1):69–75
44.
Zurück zum Zitat Van Vinh P (2022) Nonlocal free vibration characteristics of power-law and sigmoid functionally graded nanoplates considering variable nonlocal parameter. Physica E: Low-dimensional Systems and Nanostructures135:114951 Van Vinh P (2022) Nonlocal free vibration characteristics of power-law and sigmoid functionally graded nanoplates considering variable nonlocal parameter. Physica E: Low-dimensional Systems and Nanostructures135:114951
45.
Zurück zum Zitat Hoa LK, Vinh PV, Duc ND, Trung NT, Son LT, Thom DV (2020) Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science p 0954406220964522 Hoa LK, Vinh PV, Duc ND, Trung NT, Son LT, Thom DV (2020) Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science p 0954406220964522
46.
Zurück zum Zitat Daikh AA, Drai A, Bensaid I, Houari MSA, Tounsi A (2021) On vibration of functionally graded sandwich nanoplates in the thermal environment. Journal of Sandwich Structures & Materials 23(6):2217–2244 Daikh AA, Drai A, Bensaid I, Houari MSA, Tounsi A (2021) On vibration of functionally graded sandwich nanoplates in the thermal environment. Journal of Sandwich Structures & Materials 23(6):2217–2244
47.
Zurück zum Zitat Pisano A, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2d finite element based solutions. Int J Solids Struct 46(21):3836–3849CrossRefMATH Pisano A, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2d finite element based solutions. Int J Solids Struct 46(21):3836–3849CrossRefMATH
48.
Zurück zum Zitat Fakher M, Hosseini-Hashemi S (2020) Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Eng Comput 1–15 Fakher M, Hosseini-Hashemi S (2020) Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Eng Comput 1–15
49.
Zurück zum Zitat Eringen AC (1984) Theory of nonlocal elasticity and some applications. Princeton University NJ Department of Civil Engineering, Technical report Eringen AC (1984) Theory of nonlocal elasticity and some applications. Princeton University NJ Department of Civil Engineering, Technical report
Metadaten
Titel
Structural analysis of nonlocal nanobeam via FEM using equivalent nonlocal differential model
verfasst von
Pei-Liang Bian
Hai Qing
Publikationsdatum
04.04.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-021-01575-5