Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

6. Structural Design and Testing of Digitally Manufactured Concrete Structures

verfasst von: Domenico Asprone, Costantino Menna, Freek Bos, Jaime Mata-Falcón, Liberato Ferrara, Ferdinando Auricchio, Ezio Cadoni, Vítor M. C. F. Cunha, Laura Esposito, Asko Fromm, Steffen Grünewald, Harald Kloft, Viktor Mechtcherine, Venkatesh Naidu Nerella, Roel Schipper

Erschienen in: Digital Fabrication with Cement-Based Materials

Verlag: Springer International Publishing

share
TEILEN

Abstract

The form freedom enabled by digital fabrication with concrete technologies provides advantages for a wide range of concrete based objects, from architectural to structural elements. The current chapter focuses on the specifics of structural design and engineering of DFC with emphasis on those technologies based on Additive Manufacturing with extrusion. Since it is a new and innovative way to build, a clear common approach to structural engineering has not yet been developed. As a result, this chapter aims to introduce the specific challenges of structural design and engineering with the additive manufacturing technology, providing an overview of structural typologies that have been developed (especially concerning the reinforcement strategies, including fibre reinforcement). Furthermore, the structural principles adopted in DFC and the codified approaches used in conventional reinforced concrete is compared, and putative structural testing procedures and validation methods for DFC are reported.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literatur
Zurück zum Zitat (2002) RILEM TC 162-TDF Design of steel fibre reinforced concrete using the σ-w method: principles and applications. Materials and Structures, 35(5), 262–278. (2002) RILEM TC 162-TDF Design of steel fibre reinforced concrete using the σ-w method: principles and applications. Materials and Structures, 35(5), 262–278.
Zurück zum Zitat (2003) Final recommendation of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: sigma-epsilon-design method. Materials and Structures, 36(8), 560–567. (2003) Final recommendation of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: sigma-epsilon-design method. Materials and Structures, 36(8), 560–567.
Zurück zum Zitat (2005) EN 14651:2005, Test method for metallic fibre concrete - Measuring the flexural tensile strength (limit of proportionality (LOP), residual). (2005) EN 14651:2005, Test method for metallic fibre concrete - Measuring the flexural tensile strength (limit of proportionality (LOP), residual).
Zurück zum Zitat Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2013). Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 51, 57–66. Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2013). Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 51, 57–66.
Zurück zum Zitat Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015a). Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests. Cement and Concrete Composites, 57, 153–165. Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015a). Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests. Cement and Concrete Composites, 57, 153–165.
Zurück zum Zitat Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015b). Time-dependent flexural behaviour of cracked steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 72, 21–36. Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015b). Time-dependent flexural behaviour of cracked steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 72, 21–36.
Zurück zum Zitat Akbarzadeh, Masoud, Tom Van Mele, and Philippe Block. (2015). On the equilibrium of funicular polyhedral frames and convex polyhedral force diagrams. Computer-Aided Design, 63, 118–128. Akbarzadeh, Masoud, Tom Van Mele, and Philippe Block. (2015). On the equilibrium of funicular polyhedral frames and convex polyhedral force diagrams. Computer-Aided Design, 63, 118–128.
Zurück zum Zitat Abrishambaf, A., Cunha, V. M., and Barros, J. A. (2016). A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels. Engineering Fracture Mechanics, 162, 1–20. Abrishambaf, A., Cunha, V. M., and Barros, J. A. (2016). A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels. Engineering Fracture Mechanics, 162, 1–20.
Zurück zum Zitat Baril, M. A., Sorelli, L., Rethore, J., Baby, F., Toutlemonde, F., Ferrara, L., Bernardi, S., and Fafard, M. (2016). Effect of Casting Flow Defects on the Crack Propagation in UHPFRC Thin Slabs by Means of Stereovision Digital Image Correlation. Construction and Building Materials, 129, 182–192. Baril, M. A., Sorelli, L., Rethore, J., Baby, F., Toutlemonde, F., Ferrara, L., Bernardi, S., and Fafard, M. (2016). Effect of Casting Flow Defects on the Crack Propagation in UHPFRC Thin Slabs by Means of Stereovision Digital Image Correlation. Construction and Building Materials, 129, 182–192.
Zurück zum Zitat Bos, R. Wolfs, Z. Ahmed, and T. Salet. (2019). Large Scale Testing of Digitally Fabricated Concrete (DFC) Elements. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 129–147. Bos, R. Wolfs, Z. Ahmed, and T. Salet. (2019). Large Scale Testing of Digitally Fabricated Concrete (DFC) Elements. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 129–147.
Zurück zum Zitat Bos, F. P., Ahmed, Z. Y., Jutinov, E. R., et al. (2017). Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete. Materials (Basel, Switzerland), 10(11). Bos, F. P., Ahmed, Z. Y., Jutinov, E. R., et al. (2017). Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete. Materials (Basel, Switzerland), 10(11).
Zurück zum Zitat Bos, F. P., Wolfs, R. J. M., Ahmed, Z. Y., and Salet, T. A. M. (2016). Additive manufacturing of concrete in construction: potentials and challenges. Virtual and Physical Prototyping, 11(3), 209–225. Bos, F. P., Wolfs, R. J. M., Ahmed, Z. Y., and Salet, T. A. M. (2016). Additive manufacturing of concrete in construction: potentials and challenges. Virtual and Physical Prototyping, 11(3), 209–225.
Zurück zum Zitat Bran Anleu, P. C., Wangler, T., and Flatt, R. J. (2018). Chloride Ingress Through Cold Joints in Digitally Fabricated Concrete by micro-XRF Mapping. Bran Anleu, P. C., Wangler, T., and Flatt, R. J. (2018). Chloride Ingress Through Cold Joints in Digitally Fabricated Concrete by micro-XRF Mapping.
Zurück zum Zitat Burke, P. L., and Shah, S. P. (1999). Durability of extruded thin sheet PVA fiber-reinforced cement composites. In: ACI SP-190 high performance fiber-reinforced concrete thin sheet products, pp. 133–64. Burke, P. L., and Shah, S. P. (1999). Durability of extruded thin sheet PVA fiber-reinforced cement composites. In: ACI SP-190 high performance fiber-reinforced concrete thin sheet products, pp. 133–64.
Zurück zum Zitat Buswell, R. A., da Silva, W. R, Bos, F. P., Schipper, R., Lowke, D., Hack, N., Kloft, H., Mechtcherine, V., Wangler, T., and Roussel, N. (2020). A process classification framework for defining and describing Digital Fabrication with Concrete. Cement and Concrete Research, Special Issue for Digital Concrete. Buswell, R. A., da Silva, W. R, Bos, F. P., Schipper, R., Lowke, D., Hack, N., Kloft, H., Mechtcherine, V., Wangler, T., and Roussel, N. (2020). A process classification framework for defining and describing Digital Fabrication with Concrete. Cement and Concrete Research, Special Issue for Digital Concrete.
Zurück zum Zitat Cunha V. M. C. F., Barros, J. A. O., and Sena-Cruz, J. M. (2012). A finite element model with discrete embedded elements for fibre reinforced composites. Comput Struct J, 94–95, 22–33. Cunha V. M. C. F., Barros, J. A. O., and Sena-Cruz, J. M. (2012). A finite element model with discrete embedded elements for fibre reinforced composites. Comput Struct J, 94–95, 22–33.
Zurück zum Zitat Cunha, V. M. C. F, Barros, J. A. O., Sena-Cruz, J. M. (2011). An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete. Cem Concr Res J, 41, 64–76. Cunha, V. M. C. F, Barros, J. A. O., Sena-Cruz, J. M. (2011). An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete. Cem Concr Res J, 41, 64–76.
Zurück zum Zitat di Prisco, M., Ferrara, L., and Lamperti, M. G. L. (2013). Double Edge Wedge Splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites. Materials and Structures, 46(11), 1893–1918. di Prisco, M., Ferrara, L., and Lamperti, M. G. L. (2013). Double Edge Wedge Splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites. Materials and Structures, 46(11), 1893–1918.
Zurück zum Zitat EN 1990:2002 Basis of Structural Design. EN 1990:2002 Basis of Structural Design.
Zurück zum Zitat Feng, P., Meng, X., Chen, J. F., and Ye, L. (2015). Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials 93, 486–497. Feng, P., Meng, X., Chen, J. F., and Ye, L. (2015). Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials 93, 486–497.
Zurück zum Zitat Ferrara, L. (2015). Tailoring the orientation of fibres in High Performance Fibre Reinforced Cementitious Composites: part 1 - experimental evidence, monitoring and prediction. Journal of Materials and Structures Integrity, 9, 1/2/3, 72–91. Ferrara, L. (2015). Tailoring the orientation of fibres in High Performance Fibre Reinforced Cementitious Composites: part 1 - experimental evidence, monitoring and prediction. Journal of Materials and Structures Integrity, 9, 1/2/3, 72–91.
Zurück zum Zitat Ferrara, L., Ozyurt, N., and di Prisco, M. (2011). High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow” induced fibre orientation. Materials and Structures, 44(1), 109–128. Ferrara, L., Ozyurt, N., and di Prisco, M. (2011). High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow” induced fibre orientation. Materials and Structures, 44(1), 109–128.
Zurück zum Zitat Ferrara, L., Cremonesi, M., Faifer, M., Toscani, S., Sorelli, L., Baril, M. A., Réthoré, J., Baby, F., Toutlemonde, F., and Bernardi, S. (2017). Structural elements made with highly flowable UHPFRC: correlating Computational Fluid Dynamics (CFD) predictions and non-destructive survey of fibre dispersion with failure modes. Engineering Structures, 133, 151–171. Ferrara, L., Cremonesi, M., Faifer, M., Toscani, S., Sorelli, L., Baril, M. A., Réthoré, J., Baby, F., Toutlemonde, F., and Bernardi, S. (2017). Structural elements made with highly flowable UHPFRC: correlating Computational Fluid Dynamics (CFD) predictions and non-destructive survey of fibre dispersion with failure modes. Engineering Structures, 133, 151–171.
Zurück zum Zitat Ferrara, L. (2014). Fibre reinforced SCC. In Mechanical Properties of Self-Compacting Concrete. State of the Art Report of the RILEM Technical Committee 228-MPS on Mechanical Properties of SCC, K.H. Khayat and Geert de Schutter, eds. (Chapter 6), pp. 161–220, Springer, 2014, ISBN 978–3–319–03244–3. Ferrara, L. (2014). Fibre reinforced SCC. In Mechanical Properties of Self-Compacting Concrete. State of the Art Report of the RILEM Technical Committee 228-MPS on Mechanical Properties of SCC, K.H. Khayat and Geert de Schutter, eds. (Chapter 6), pp. 161–220, Springer, 2014, ISBN 978–3–319–03244–3.
Zurück zum Zitat Ferrara, L., Park, Y. D., Shah, S. P. (2007). A method for mix-design of fibre reinforced self compacting concrete. Cement and Concrete Research, 37, 957–971. Ferrara, L., Park, Y. D., Shah, S. P. (2007). A method for mix-design of fibre reinforced self compacting concrete. Cement and Concrete Research, 37, 957–971.
Zurück zum Zitat Figuereido, S. C., Romero Rodruiguez, C., Ahmed, Z. Y., Bos, D. H., Xu. Y., Salet, T. M., Copuroglu, O., Schlangen, E., and Bos, F. P. (2019). 2An approach to develop printable strain hardening cementitious composites. Materials and Design, 169, 107651. Figuereido, S. C., Romero Rodruiguez, C., Ahmed, Z. Y., Bos, D. H., Xu. Y., Salet, T. M., Copuroglu, O., Schlangen, E., and Bos, F. P. (2019). 2An approach to develop printable strain hardening cementitious composites. Materials and Design, 169, 107651.
Zurück zum Zitat fib Model Code 2010 – 2 vol. Bulletin 55 and 56. fib Model Code 2010 – 2 vol. Bulletin 55 and 56.
Zurück zum Zitat FIB. (2010). fib Model Code for Concrete Structures. Ernst & Sohn, October 2013. ISBN: 978–3–433–03061–5. FIB. (2010). fib Model Code for Concrete Structures. Ernst & Sohn, October 2013. ISBN: 978–3–433–03061–5.
Zurück zum Zitat Fromm, Asko, Schein, Markus, Grohmann. (2017). Manfred: Reinforcement of Additive Manufactured Concrete Elements. In: Bögle, A., Grohmann, M., (Eds.), Proceedings of the IASS Annual Symposium 2017 September, 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.). Interfaces: architecture. Engineering. Science 25 - 28th; 2017. Fromm, Asko, Schein, Markus, Grohmann. (2017). Manfred: Reinforcement of Additive Manufactured Concrete Elements. In: Bögle, A., Grohmann, M., (Eds.), Proceedings of the IASS Annual Symposium 2017 September, 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.). Interfaces: architecture. Engineering. Science 25 - 28th; 2017.
Zurück zum Zitat Hambach, M., and Volkmer, D. (2017). Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites, 79, 62–70. Hambach, M., and Volkmer, D. (2017). Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites, 79, 62–70.
Zurück zum Zitat Kuder, K. G., and Shah, S. P. (2003). Effects of pressure on resistance to freezing and thawing of fiber-reinforced cement board. ACI Mater J, 100(6), 463–468. Kuder, K. G., and Shah, S. P. (2003). Effects of pressure on resistance to freezing and thawing of fiber-reinforced cement board. ACI Mater J, 100(6), 463–468.
Zurück zum Zitat Kuder, K. G., and Shah, S. P. (2010). Processing of high-performance fiber-reinforced cement-based composites. Construction and Building Materials, 24, 181–186. Kuder, K. G., and Shah, S. P. (2010). Processing of high-performance fiber-reinforced cement-based composites. Construction and Building Materials, 24, 181–186.
Zurück zum Zitat Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., and Thorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42, 558–566. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., and Thorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42, 558–566.
Zurück zum Zitat Labonette, N., Rønnquist, A., Manum, B., and Rüther, P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72(3), 347–366. Labonette, N., Rønnquist, A., Manum, B., and Rüther, P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72(3), 347–366.
Zurück zum Zitat Lloret-Fritschi, E., Scotto, F., Gramazio, F., Kohler, M., Graser, K., Wangler, T., Reiter, L., Flatt, R.J., and Mata-Falcón, J. (2019). Challenges of Real-Scale Production with Smart Dynamic Casting. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 299–310. Lloret-Fritschi, E., Scotto, F., Gramazio, F., Kohler, M., Graser, K., Wangler, T., Reiter, L., Flatt, R.J., and Mata-Falcón, J. (2019). Challenges of Real-Scale Production with Smart Dynamic Casting. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 299–310.
Zurück zum Zitat Martinie, L., Rossi, P., and Roussel, N. (2010). Rheology of fibre reinforced cementitious materials: classifications and prediction. Cement and Concrete Research, 40, 226–240. Martinie, L., Rossi, P., and Roussel, N. (2010). Rheology of fibre reinforced cementitious materials: classifications and prediction. Cement and Concrete Research, 40, 226–240.
Zurück zum Zitat Martinie, L., and Roussel, N. (2011). Simple tools for fibre orientation prediction in industrial practice. Cement and Concrete Research, 41, 993-1000. Martinie, L., and Roussel, N. (2011). Simple tools for fibre orientation prediction in industrial practice. Cement and Concrete Research, 41, 993-1000.
Zurück zum Zitat Marti, P. (1985). Truss models in detailing. Concrete International, 7(12), 66–73. Marti, P. (1985). Truss models in detailing. Concrete International, 7(12), 66–73.
Zurück zum Zitat Martens, P., Mathot, M., Bos, F. P., and Coenders, J. (2017). Optimising 3D printed concrete structures using topology optimisation. High Tech Concrete: where technology and engineering meet: Proceedings of the 2017 fib Symposium, held in Maastricht, The Netherlands, June 12–14, 2017. Hordijk, D. A., and Luković, M. (eds.). Cham: Springer, pp. 301–309 9. Martens, P., Mathot, M., Bos, F. P., and Coenders, J. (2017). Optimising 3D printed concrete structures using topology optimisation. High Tech Concrete: where technology and engineering meet: Proceedings of the 2017 fib Symposium, held in Maastricht, The Netherlands, June 12–14, 2017. Hordijk, D. A., and Luković, M. (eds.). Cham: Springer, pp. 301–309 9.
Zurück zum Zitat Martens, P. (2018). Optimising 3D Printed Concrete Structures: Concrete additive manufacturing and topology optimisation, MSc graduation thesis, TU Delft, the Netherlands. Martens, P. (2018). Optimising 3D Printed Concrete Structures: Concrete additive manufacturing and topology optimisation, MSc graduation thesis, TU Delft, the Netherlands.
Zurück zum Zitat Model Code 2010 - Final draft, Vol 1. (350 pp, ISBN 978–2–88394–105–2, March 2012). Model Code 2010 - Final draft, Vol 1. (350 pp, ISBN 978–2–88394–105–2, March 2012).
Zurück zum Zitat Marchment, T., Xia, M., Dodd, E., Sanjayan, J., and Nematollahi, B. (2017). Effect of delay time on the mechanical properties of extrusion-based 3D printed concrete. In 34th International Symposium on Automation and Robotics in Construction. Marchment, T., Xia, M., Dodd, E., Sanjayan, J., and Nematollahi, B. (2017). Effect of delay time on the mechanical properties of extrusion-based 3D printed concrete. In 34th International Symposium on Automation and Robotics in Construction.
Zurück zum Zitat Nerella, V. N., Ogura, H., and Mechtcherine, V. (2018 July). Incorporating reinforcement into digital concrete construction. Proceeding of the annual Symposium of the IASS—International Association for Shell and Spatial Structures: Creativity in Structural Design, July 2018, MIT, Boston. Nerella, V. N., Ogura, H., and Mechtcherine, V. (2018 July). Incorporating reinforcement into digital concrete construction. Proceeding of the annual Symposium of the IASS—International Association for Shell and Spatial Structures: Creativity in Structural Design, July 2018, MIT, Boston.
Zurück zum Zitat Nerella, V. M., Krause, M., Näther, M., and Mechtcherine, V. (2016). Studying printability of fresh concrete for formwork free Concrete onsite 3D Printing technology (CONPrint3D). In Proceeding for the 25th Conference on Rheology of Building Materials, Regensburg, Germany. Nerella, V. M., Krause, M., Näther, M., and Mechtcherine, V. (2016). Studying printability of fresh concrete for formwork free Concrete onsite 3D Printing technology (CONPrint3D). In Proceeding for the 25th Conference on Rheology of Building Materials, Regensburg, Germany.
Zurück zum Zitat Panda, B., Noor Mohamed, N. A., Tay, Y. W. D., and Tan, M. J. (2019). Bond Strength in 3D Printed Geopolymer Mortar. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018. Springer International Publishing, pp. 200–206. Panda, B., Noor Mohamed, N. A., Tay, Y. W. D., and Tan, M. J. (2019). Bond Strength in 3D Printed Geopolymer Mortar. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018. Springer International Publishing, pp. 200–206.
Zurück zum Zitat Panda, B., Paul, S. V., and Tan, M. J. (2017). Anisotropic mechanical performance of 3D printed fibre reinforced sustainable construction material. Materials Letters, 2019, 146–149. Panda, B., Paul, S. V., and Tan, M. J. (2017). Anisotropic mechanical performance of 3D printed fibre reinforced sustainable construction material. Materials Letters, 2019, 146–149.
Zurück zum Zitat Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D., and Tan, M. J. (2018). Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement, 113, 108–116. Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D., and Tan, M. J. (2018). Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement, 113, 108–116.
Zurück zum Zitat Paul, S. C., Y. W. D. Tay, P. B., and Tan, M. J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering, 18, 311–319. Paul, S. C., Y. W. D. Tay, P. B., and Tan, M. J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering, 18, 311–319.
Zurück zum Zitat Pavilion uibk (to be published shortly). Pavilion uibk (to be published shortly).
Zurück zum Zitat Peled, A., Cyr, M., and Shah, S. P. (2000). High content of fly ash (Class F) in extruded ementitious composites. ACI Mater J, 97(5), 509–517. Peled, A., Cyr, M., and Shah, S. P. (2000). High content of fly ash (Class F) in extruded ementitious composites. ACI Mater J, 97(5), 509–517.
Zurück zum Zitat Peled, A., and Shah, S. P. (2003). Processing effects in cementitious composites: extrusion and casting. J Mater Civil Eng, 15(2), 192–199. Peled, A., and Shah, S. P. (2003). Processing effects in cementitious composites: extrusion and casting. J Mater Civil Eng, 15(2), 192–199.
Zurück zum Zitat Rosanna Napolitano, Costantino Menna, Domenico Asprone, Lorenzo del Giudice. Experimental and numerical assessment of the interface behaviour of 3D Printed concrete elements w/wo interlaminar reinforcement. Cement and concrete composites (submitted). Rosanna Napolitano, Costantino Menna, Domenico Asprone, Lorenzo del Giudice. Experimental and numerical assessment of the interface behaviour of 3D Printed concrete elements w/wo interlaminar reinforcement. Cement and concrete composites (submitted).
Zurück zum Zitat Radtke, F. K. F., Simone, A., Sluys, L. J. (2010). A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres. Engineering Fracture Mechanics, 77(4), 597–620. Radtke, F. K. F., Simone, A., Sluys, L. J. (2010). A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres. Engineering Fracture Mechanics, 77(4), 597–620.
Zurück zum Zitat Radtke, F. K. F., Simone, A., and Sluys, L. J. (2011). A partition of unity finite element method for simulating non‐linear debonding and matrix failure in thin fibre composites. International Journal for Numerical Methods in Engineering, 86(4-5), 453–476. Radtke, F. K. F., Simone, A., and Sluys, L. J. (2011). A partition of unity finite element method for simulating non‐linear debonding and matrix failure in thin fibre composites. International Journal for Numerical Methods in Engineering, 86(4-5), 453–476.
Zurück zum Zitat Salet, T. A. M., and Fietsbrug Nijmegen. (2019). Protocol voor de veiligheid van een voorgespannen geprinte betonnen fiets- en voetgangersbrug, [rapport ref number to be added], for Rijkswaterstaat. Eindhoven University of Technology, Netherlands. Salet, T. A. M., and Fietsbrug Nijmegen. (2019). Protocol voor de veiligheid van een voorgespannen geprinte betonnen fiets- en voetgangersbrug, [rapport ref number to be added], for Rijkswaterstaat. Eindhoven University of Technology, Netherlands.
Zurück zum Zitat Soltan, D. G., and Li, V. C. (2018). A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites, 90, 1–13. Soltan, D. G., and Li, V. C. (2018). A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites, 90, 1–13.
Zurück zum Zitat Soetens, T., and Matthys, S. (2014). Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete. Construction and Building Materials, 73, 458–471. Soetens, T., and Matthys, S. (2014). Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete. Construction and Building Materials, 73, 458–471.
Zurück zum Zitat Schlaich, J., Schäfer, K., and Jennewein, M. (1987). Toward a consistent design of structural concrete. PCI Journal, 32(3), 74–150. Schlaich, J., Schäfer, K., and Jennewein, M. (1987). Toward a consistent design of structural concrete. PCI Journal, 32(3), 74–150.
Zurück zum Zitat Stefanoni, M., Angst, U., and Elsener, B. (2019). Corrosion Challenges and Opportunities in Digital Fabrication of Reinforced Concrete. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 225–233. Stefanoni, M., Angst, U., and Elsener, B. (2019). Corrosion Challenges and Opportunities in Digital Fabrication of Reinforced Concrete. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 225–233.
Zurück zum Zitat Schröfl, C., Nerella, V. N., and Mechtcherine, V. (2019). Capillary Water Intake by 3D-Printed Concrete Visualised and Quantified by Neutron Radiography. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 217–224. Schröfl, C., Nerella, V. N., and Mechtcherine, V. (2019). Capillary Water Intake by 3D-Printed Concrete Visualised and Quantified by Neutron Radiography. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 217–224.
Zurück zum Zitat Srinivasan, S., Deford, D., and Shah, P. (1999). The use of extrusion rheometry in the development of extrudate fibre-reinforced cement composites. Concrete Science and Engineering, 1(11), 26–36. Srinivasan, S., Deford, D., and Shah, P. (1999). The use of extrusion rheometry in the development of extrudate fibre-reinforced cement composites. Concrete Science and Engineering, 1(11), 26–36.
Zurück zum Zitat Vantyghem, G., De Corte, W., Shakour, E., and Amir, O. (2019). Topology optimization and 3D printing of a post-tensioned concrete girder, submitted (under review). Vantyghem, G., De Corte, W., Shakour, E., and Amir, O. (2019). Topology optimization and 3D printing of a post-tensioned concrete girder, submitted (under review).
Zurück zum Zitat Van Der Putten, J., De Schutter, G., and Van Tittelboom, K. (2019). The Effect of Print Parameters on the (Micro) structure of 3D Printed Cementitious Materials. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr.—Digit. Concr. 2018, Springer International Publishing, pp. 234–244. Van Der Putten, J., De Schutter, G., and Van Tittelboom, K. (2019). The Effect of Print Parameters on the (Micro) structure of 3D Printed Cementitious Materials. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr.—Digit. Concr. 2018, Springer International Publishing, pp. 234–244.
Zurück zum Zitat Zhou, X., and Li, Z. (2005). Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion. Materials and Structures, 38, 17–24. Zhou, X., and Li, Z. (2005). Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion. Materials and Structures, 38, 17–24.
Zurück zum Zitat Zhan, Y., and Meschke, G. (2016). Multilevel computational model for failure analysis of steel-fibre–reinforced concrete structures. J. Eng. Mech. ASCE, 142(11), 1–14. Zhan, Y., and Meschke, G. (2016). Multilevel computational model for failure analysis of steel-fibre–reinforced concrete structures. J. Eng. Mech. ASCE, 142(11), 1–14.
Zurück zum Zitat Zareiyan, B., and Khoshnevish, B. (2017). Interlayer adhesion and strength of structures in Contour Crafting—Effects of aggregate size, extrusion rate, and layer thickness. Automation in Construction, 81, 112–121. Zareiyan, B., and Khoshnevish, B. (2017). Interlayer adhesion and strength of structures in Contour Crafting—Effects of aggregate size, extrusion rate, and layer thickness. Automation in Construction, 81, 112–121.
Zurück zum Zitat Zahabizadeh, B., Cunha, V. M. C. F., Pereira, J., and Gonçalves, C (2019). The effect of loading direction on the compressive behaviour of a 3D printed cement-based material. In IABSE Symposium, Guimaraes 2019: Towards a Resilient Built Environment Risk and Asset Management, pp. 1658–1665. Zahabizadeh, B., Cunha, V. M. C. F., Pereira, J., and Gonçalves, C (2019). The effect of loading direction on the compressive behaviour of a 3D printed cement-based material. In IABSE Symposium, Guimaraes 2019: Towards a Resilient Built Environment Risk and Asset Management, pp. 1658–1665.
Metadaten
Titel
Structural Design and Testing of Digitally Manufactured Concrete Structures
verfasst von
Domenico Asprone
Costantino Menna
Freek Bos
Jaime Mata-Falcón
Liberato Ferrara
Ferdinando Auricchio
Ezio Cadoni
Vítor M. C. F. Cunha
Laura Esposito
Asko Fromm
Steffen Grünewald
Harald Kloft
Viktor Mechtcherine
Venkatesh Naidu Nerella
Roel Schipper
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-90535-4_6