Skip to main content
Erschienen in: Journal of Materials Science 16/2017

04.05.2017 | Composites

Structural morphological and optical properties of P3HT/CdSe/WS2 ternary composites for hybrid organic/inorganic photovoltaics

verfasst von: A. Generosi, M. Guaragno, T. Di Luccio, C. Borriello, A. Bruno, B. Paci

Erschienen in: Journal of Materials Science | Ausgabe 16/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of complete organic/inorganic hybrid solar cells (HOSCs) is strictly related to the achievement of appealing electrical performances. In this context, the optimization of device architectures and of the active material’s structural and morphological properties is crucial. In this work, such highly critical issues are addressed for a novel hybrid nanocomposite: tungsten disulfide nanotubes (WS2 NTs) and cadmium selenide quantum dots (CdSe QDs) embedded into a Poly (3-hexylthiophene-2,5-diyl) (P3HT) polymeric matrix. Both binary and ternary compounds are produced and investigated by means of an unconventional energy-dispersive X-ray diffraction technique combined with atomic force microscopy and Raman spectroscopy. Additionally, the effects of low-temperature thermal treatments on the nanocomposite’s structure and morphology are disclosed, unraveling their connection of these features to the optical response of the materials, investigated by UV–Vis spectroscopy. Promising results are obtained in terms of enhanced crystallinity, phase separation, and the possibility of decorating the WS2 NTs with CdSe dots is demonstrated, opening new perspectives for further development of complete HOSCs based on this innovative ternary system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ahmad J, Bazaka K, Anderson LJ, White RD, Jacob MV (2013) Materials and methods for encapsulation of OPV: a review. Renew Sustain Energy Rev 27:104–117CrossRef Ahmad J, Bazaka K, Anderson LJ, White RD, Jacob MV (2013) Materials and methods for encapsulation of OPV: a review. Renew Sustain Energy Rev 27:104–117CrossRef
2.
Zurück zum Zitat El Chaara L, Lamonta LA, El Zeinb N (2011) Review of photovoltaic technologies. Renew Sustain Energy Rev 15:2165–2175CrossRef El Chaara L, Lamonta LA, El Zeinb N (2011) Review of photovoltaic technologies. Renew Sustain Energy Rev 15:2165–2175CrossRef
3.
Zurück zum Zitat Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photon 6:153–161CrossRef Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photon 6:153–161CrossRef
4.
Zurück zum Zitat Paci B, Generosi A, Rossi Albertini V, Perfetti P, De Bettignies R (2009) The role of C60 barrier layer in improving the performances of efficient polymer-based photovoltaic devices: an AFM/EDXR time-resolved study. J Phys Chem C 113:19740–19747CrossRef Paci B, Generosi A, Rossi Albertini V, Perfetti P, De Bettignies R (2009) The role of C60 barrier layer in improving the performances of efficient polymer-based photovoltaic devices: an AFM/EDXR time-resolved study. J Phys Chem C 113:19740–19747CrossRef
5.
Zurück zum Zitat Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6:162–169CrossRef Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6:162–169CrossRef
6.
Zurück zum Zitat Paci B, Kakavelakis G, Generosi A, Rossi Albertini V, Wright J, Ferrero C, Konios D, Stratakis E, Kymakis E (2015) Stability enhancement of organic photovoltaic devices utilizing partially reduced graphene oxide as the hole transport layer: nanoscale insight into structural/interfacial properties and aging effects. RSC Adv 5:106930–106940CrossRef Paci B, Kakavelakis G, Generosi A, Rossi Albertini V, Wright J, Ferrero C, Konios D, Stratakis E, Kymakis E (2015) Stability enhancement of organic photovoltaic devices utilizing partially reduced graphene oxide as the hole transport layer: nanoscale insight into structural/interfacial properties and aging effects. RSC Adv 5:106930–106940CrossRef
7.
Zurück zum Zitat Ramar M, Suman CK, Manimozhi R, Ahamada R, Srivastava R (2014) Study of Schottky contact in binary and ternary hybrid CdSe quantum dot solar cells. RSC Adv 4:32651–32657CrossRef Ramar M, Suman CK, Manimozhi R, Ahamada R, Srivastava R (2014) Study of Schottky contact in binary and ternary hybrid CdSe quantum dot solar cells. RSC Adv 4:32651–32657CrossRef
8.
Zurück zum Zitat Kim HD, Ohkita H, Benten H, Ito S (2014) Ternary blend hybrid solar cells incorporating wide and narrow bandgap polymers. ACS Appl Mater Interfaces 6:17551–17555CrossRef Kim HD, Ohkita H, Benten H, Ito S (2014) Ternary blend hybrid solar cells incorporating wide and narrow bandgap polymers. ACS Appl Mater Interfaces 6:17551–17555CrossRef
9.
Zurück zum Zitat Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576CrossRef Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576CrossRef
10.
Zurück zum Zitat Yang G, Tao H, Qin P, Ke W, Fang G (2016) Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A 4:3970–3990CrossRef Yang G, Tao H, Qin P, Ke W, Fang G (2016) Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A 4:3970–3990CrossRef
11.
Zurück zum Zitat Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446CrossRef Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446CrossRef
12.
Zurück zum Zitat Kaplan-Ashiri I, Cohen SR, Gartsman K, Ivanovskaya V, Heine T, Seifert G, Wiesel I, Wagner HD, Tenne R (2004) Mechanical behavior of individual WS2 nanotubes. J Mater Res 19:454–459CrossRef Kaplan-Ashiri I, Cohen SR, Gartsman K, Ivanovskaya V, Heine T, Seifert G, Wiesel I, Wagner HD, Tenne R (2004) Mechanical behavior of individual WS2 nanotubes. J Mater Res 19:454–459CrossRef
13.
Zurück zum Zitat Tang DM, Wei X, Wang MS, Kawamoto N, Bando Y, Zhi C, Mitome M, Zak A, Tenne R, Golberg D (2013) Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy. Nano Lett 13(3):1034–1040CrossRef Tang DM, Wei X, Wang MS, Kawamoto N, Bando Y, Zhi C, Mitome M, Zak A, Tenne R, Golberg D (2013) Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy. Nano Lett 13(3):1034–1040CrossRef
14.
Zurück zum Zitat Zak A, Sallacan-Ecker L, Margolin A, Genut M, Tenne R (2009) Insight into the growth mechanism of WS2 nanotubes in the scale-up fluidized-bed reactor. Nano 4:91–98CrossRef Zak A, Sallacan-Ecker L, Margolin A, Genut M, Tenne R (2009) Insight into the growth mechanism of WS2 nanotubes in the scale-up fluidized-bed reactor. Nano 4:91–98CrossRef
15.
Zurück zum Zitat Milošević I, Nikolić B, Dobardžić E, Damnjanović M (2007) Electronic properties and optical spectra of MoS2 and WS2 nanotubes. Phys Rev B 76:233414 Milošević I, Nikolić B, Dobardžić E, Damnjanović M (2007) Electronic properties and optical spectra of MoS2 and WS2 nanotubes. Phys Rev B 76:233414
16.
Zurück zum Zitat Ghorbani-Asl M, Zibouche N, Wahiduzzaman M, Oliveira AF, Kuc A, Heine T (2013) Electromechanics in MoS2 and WS2: nanotubes versus monolayers. Sci Rep 3:2961 Ghorbani-Asl M, Zibouche N, Wahiduzzaman M, Oliveira AF, Kuc A, Heine T (2013) Electromechanics in MoS2 and WS2: nanotubes versus monolayers. Sci Rep 3:2961
17.
Zurück zum Zitat Kumar S, Borriello C, Nenna G, Rosentsveig R, Di Luccio T (2012) Dispersion of WS2 nanotubes and nanoparticles into conducting polymer matrices for application as LED materials. Eur Phys J B 85:160 Kumar S, Borriello C, Nenna G, Rosentsveig R, Di Luccio T (2012) Dispersion of WS2 nanotubes and nanoparticles into conducting polymer matrices for application as LED materials. Eur Phys J B 85:160
18.
Zurück zum Zitat Bruno A, Borriello C, Haque SA, Minarini C, Di Luccio T (2014) Ternary hybrid systems of P3HT–CdSe–WS2 nanotubes for photovoltaic applications. Phys Chem Chem Phys 16:17998–18003CrossRef Bruno A, Borriello C, Haque SA, Minarini C, Di Luccio T (2014) Ternary hybrid systems of P3HT–CdSe–WS2 nanotubes for photovoltaic applications. Phys Chem Chem Phys 16:17998–18003CrossRef
19.
Zurück zum Zitat Di Luccio T, Borriello C, Kumar S, Nenna G (2011) Charge transfer properties of surface-treated WS2 nanotubes and fullerene-like nanoparticles. Sens and Transducer J 12:26–32 Di Luccio T, Borriello C, Kumar S, Nenna G (2011) Charge transfer properties of surface-treated WS2 nanotubes and fullerene-like nanoparticles. Sens and Transducer J 12:26–32
20.
Zurück zum Zitat Unalan HE, Yang Y, Zhang Y, Hiralal P, Kuo D, Dalal S, Butler T, Cha SN, Jang JE, Chremmou K, Lentaris G, Wei D, Rosentsveig R, Suzuki K, Matsumoto H, Minagawa M, Hayashi Y, Chhowalla M, Tanioka A, Milne WI, Tenne R, Amaratunga GAJ (2008) ZnO nanowire and WS2 nanotube electronics. IEEE Trans Electron Dev 55:2988–3000CrossRef Unalan HE, Yang Y, Zhang Y, Hiralal P, Kuo D, Dalal S, Butler T, Cha SN, Jang JE, Chremmou K, Lentaris G, Wei D, Rosentsveig R, Suzuki K, Matsumoto H, Minagawa M, Hayashi Y, Chhowalla M, Tanioka A, Milne WI, Tenne R, Amaratunga GAJ (2008) ZnO nanowire and WS2 nanotube electronics. IEEE Trans Electron Dev 55:2988–3000CrossRef
21.
Zurück zum Zitat Di Luccio T, Borriello C, Bruno A, Maglione MG, Minarini C, Nenna G (2013) Preparation and characterization of novel nanocomposites of WS2 nanotubes and polyfluorene conductive polymer. Phys Stat Sol A 210:2278–2283CrossRef Di Luccio T, Borriello C, Bruno A, Maglione MG, Minarini C, Nenna G (2013) Preparation and characterization of novel nanocomposites of WS2 nanotubes and polyfluorene conductive polymer. Phys Stat Sol A 210:2278–2283CrossRef
22.
Zurück zum Zitat Tenne R, Rosentsveig R, Zak A (2013) Inorganic nanotubes and fullerene-like nanoparticles: synthesis, mechanical properties, and applications. Phys Stat Sol 210:2253–2258 Tenne R, Rosentsveig R, Zak A (2013) Inorganic nanotubes and fullerene-like nanoparticles: synthesis, mechanical properties, and applications. Phys Stat Sol 210:2253–2258
23.
Zurück zum Zitat Han LL, Qin DH, Jiang X, Liu YS, Wang L, Chen JW, Cao Y (2006) Hybrid photovoltaic devices based on chalcogenide nanostructures. Nanotechnology 17:4736–4742CrossRef Han LL, Qin DH, Jiang X, Liu YS, Wang L, Chen JW, Cao Y (2006) Hybrid photovoltaic devices based on chalcogenide nanostructures. Nanotechnology 17:4736–4742CrossRef
24.
Zurück zum Zitat Hammer NI, Emrick T, Barnes MD (2007) Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics. Nanoscale Res Lett 2:282–290CrossRef Hammer NI, Emrick T, Barnes MD (2007) Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics. Nanoscale Res Lett 2:282–290CrossRef
25.
Zurück zum Zitat Jeltsch KF, Schadel M, Bonekamp JB, Niyamakom P, Rauscher F, Lademann HWA, Dumsch I, Allard S, Scherf U, Meerholz K (2012) Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods. Adv Funct Mater 22:397–404CrossRef Jeltsch KF, Schadel M, Bonekamp JB, Niyamakom P, Rauscher F, Lademann HWA, Dumsch I, Allard S, Scherf U, Meerholz K (2012) Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods. Adv Funct Mater 22:397–404CrossRef
26.
Zurück zum Zitat Kanemoto R, Anas A, Matsumoto Y, Ueji R, Itoh T, Baba Y, Nakanishi S, Shikawa M, Biju V (2008) Relations between dewetting of polymer thin films and phase-separation of encompassed Quantum dots. J Phys Chem C 112:8184–8191CrossRef Kanemoto R, Anas A, Matsumoto Y, Ueji R, Itoh T, Baba Y, Nakanishi S, Shikawa M, Biju V (2008) Relations between dewetting of polymer thin films and phase-separation of encompassed Quantum dots. J Phys Chem C 112:8184–8191CrossRef
27.
Zurück zum Zitat Lu HW, Bao DD, Penchev M, Ghazinejad M, Vullev VI, Ozkan CS, Ozkan M (2010) Pyridine-coated lead sulfide quantum dots for polymer hybrid photovoltaic devices. Adv Sci Lett 3:101–109CrossRef Lu HW, Bao DD, Penchev M, Ghazinejad M, Vullev VI, Ozkan CS, Ozkan M (2010) Pyridine-coated lead sulfide quantum dots for polymer hybrid photovoltaic devices. Adv Sci Lett 3:101–109CrossRef
28.
Zurück zum Zitat Guchhait A, Rath AK, Pal AJ (2011) To make polymer: quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles. Sol En Mat Sol Cell 95:651–656CrossRef Guchhait A, Rath AK, Pal AJ (2011) To make polymer: quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles. Sol En Mat Sol Cell 95:651–656CrossRef
29.
Zurück zum Zitat Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Phys Chem 104:1153–1175 Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Phys Chem 104:1153–1175
30.
Zurück zum Zitat Trung NN, Luu QP, Son BT, Sinh LH, Bae JY (2012) Preparation and characterization of silicone resin nanocomposite containing CdSe/ZnS quantum dots. Polym Compos 33:1786–1791CrossRef Trung NN, Luu QP, Son BT, Sinh LH, Bae JY (2012) Preparation and characterization of silicone resin nanocomposite containing CdSe/ZnS quantum dots. Polym Compos 33:1786–1791CrossRef
31.
Zurück zum Zitat Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2457CrossRef Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2457CrossRef
32.
Zurück zum Zitat Holder E, Tessler N, Rogach AL (2008) Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. J Mater Chem 18:1064–1078CrossRef Holder E, Tessler N, Rogach AL (2008) Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. J Mater Chem 18:1064–1078CrossRef
33.
Zurück zum Zitat Dong Y, Lu J, Yan F, Xu Q (2009) Optical study of poly(3-decylthiophene)/CdS nanocomposites. Polym Compos 30(6):723–730CrossRef Dong Y, Lu J, Yan F, Xu Q (2009) Optical study of poly(3-decylthiophene)/CdS nanocomposites. Polym Compos 30(6):723–730CrossRef
34.
Zurück zum Zitat Borriello C, Masala S, Bizzarro V, Nenna G, Re M, Pesce E, Minarini C, Di Luccio T (2011) Electroluminescence properties of poly(3-hexylthiophene)–cadmium sulfide nanoparticles grown in situ. J Appl Polym Sci 122:3624–3629CrossRef Borriello C, Masala S, Bizzarro V, Nenna G, Re M, Pesce E, Minarini C, Di Luccio T (2011) Electroluminescence properties of poly(3-hexylthiophene)–cadmium sulfide nanoparticles grown in situ. J Appl Polym Sci 122:3624–3629CrossRef
35.
Zurück zum Zitat Masala S, Del Gobbo S, Borriello C, Bizzarro V, La Ferrara V, Re M, Pesce E, Minarini C, De Crescenzi M, Di Luccio T (2011) Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles. J Nanoparticle Res 13:6537–6544CrossRef Masala S, Del Gobbo S, Borriello C, Bizzarro V, La Ferrara V, Re M, Pesce E, Minarini C, De Crescenzi M, Di Luccio T (2011) Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles. J Nanoparticle Res 13:6537–6544CrossRef
36.
Zurück zum Zitat Feng W, Qin C, Shen Y, Li Y, Luo W, An H, Feng Y (2014) A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch. Sci Rep 4:3777 Feng W, Qin C, Shen Y, Li Y, Luo W, An H, Feng Y (2014) A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch. Sci Rep 4:3777
37.
Zurück zum Zitat Zheng X-L, Qin W-J, Ling T, Pan C-F, Du X-W (2015) Carbon nanotube reinforced CdSe inverse opal with crack-free structure and high conductivity for photovoltaic applications. Adv Mater Interface 2:1400464 Zheng X-L, Qin W-J, Ling T, Pan C-F, Du X-W (2015) Carbon nanotube reinforced CdSe inverse opal with crack-free structure and high conductivity for photovoltaic applications. Adv Mater Interface 2:1400464
38.
Zurück zum Zitat Liu B, Li X-B, Gao Y-J, Li Z-J, Meng Q-Y, Tung C-H, Wu L-Z (2015) A solution-processed mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy Environ Sci 8:1443–1449CrossRef Liu B, Li X-B, Gao Y-J, Li Z-J, Meng Q-Y, Tung C-H, Wu L-Z (2015) A solution-processed mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy Environ Sci 8:1443–1449CrossRef
39.
Zurück zum Zitat Sreejith S, Hansen R, Joshi H, Kutty RG, Liu Z, Zheng L, Yang J, Zhao Y (2016) Quantum dot decorated aligned carbon nanotube bundles for a performance enhanced photoswitch. Nanoscale 8:8547–8552CrossRef Sreejith S, Hansen R, Joshi H, Kutty RG, Liu Z, Zheng L, Yang J, Zhao Y (2016) Quantum dot decorated aligned carbon nanotube bundles for a performance enhanced photoswitch. Nanoscale 8:8547–8552CrossRef
40.
Zurück zum Zitat Hodes G (1993) Size-quantized nanocrystalline semiconductor films. Isr J Chem 33:95–106CrossRef Hodes G (1993) Size-quantized nanocrystalline semiconductor films. Isr J Chem 33:95–106CrossRef
41.
Zurück zum Zitat Sasha G, Gary H (1994) Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films. J Phys Chem 98:5338–5346CrossRef Sasha G, Gary H (1994) Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films. J Phys Chem 98:5338–5346CrossRef
42.
Zurück zum Zitat Nozik A (2002) Quantum dot solar cells. J Phys E Low Dimens Syst Nanostructure 14:115–120CrossRef Nozik A (2002) Quantum dot solar cells. J Phys E Low Dimens Syst Nanostructure 14:115–120CrossRef
43.
Zurück zum Zitat Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. tuning photoresponse through size and shape control of CdSe–TiO2 architecture. JACS 130:4007–4015CrossRef Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. tuning photoresponse through size and shape control of CdSe–TiO2 architecture. JACS 130:4007–4015CrossRef
44.
Zurück zum Zitat Yanab J, Zhou F (2011) TiO2 nanotubes: structure optimization for solar cells. J Mater Chem 21:9406–9418CrossRef Yanab J, Zhou F (2011) TiO2 nanotubes: structure optimization for solar cells. J Mater Chem 21:9406–9418CrossRef
45.
Zurück zum Zitat Reese MO, Morfa AJ, White MS, Kopidakis N, Shaheen SE, Rumbles G, Ginley DS (2008) Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. Sol Energy Mat Sol Cell 92:746–752CrossRef Reese MO, Morfa AJ, White MS, Kopidakis N, Shaheen SE, Rumbles G, Ginley DS (2008) Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. Sol Energy Mat Sol Cell 92:746–752CrossRef
46.
Zurück zum Zitat Paci B, Generosi A, Generosi R, Bailo D, Rossi Albertini V (2009) Joint time-resolved AFM/EDXR techniques for thin films morphological in situ studies. Chem Phys Lett 483:159–163CrossRef Paci B, Generosi A, Generosi R, Bailo D, Rossi Albertini V (2009) Joint time-resolved AFM/EDXR techniques for thin films morphological in situ studies. Chem Phys Lett 483:159–163CrossRef
47.
Zurück zum Zitat Paci B, Generosi A, Rossi Albertini V, de Bettignes R (2013) Improved structural/morphological durability of poly(3-hexylthiophene) nanofibers photoactive layers for organic solar cells. Chem Phys Lett 587:50–55CrossRef Paci B, Generosi A, Rossi Albertini V, de Bettignes R (2013) Improved structural/morphological durability of poly(3-hexylthiophene) nanofibers photoactive layers for organic solar cells. Chem Phys Lett 587:50–55CrossRef
48.
Zurück zum Zitat Rossi Albertini V, Paci B, Generosi A (2006) The Energy Dispersive X-ray Reflectometry as a unique laboratory tool to investigate morphological properties of layered systems and devices. J Phys D Appl Phys 39:461–486CrossRef Rossi Albertini V, Paci B, Generosi A (2006) The Energy Dispersive X-ray Reflectometry as a unique laboratory tool to investigate morphological properties of layered systems and devices. J Phys D Appl Phys 39:461–486CrossRef
49.
Zurück zum Zitat Zhua YQ, Hsu WK, Terrones H, Grobert N, Chang BH, Terrones M, Wei BQ, Kroto HW, Walton DRM, Boothroyd CB, Kinloch I, Chen GZ, Windle AH, Fray DJ (2000) Morphology, structure and growth of WS2 nanotubes. J Mater Chem 10:2570–2577CrossRef Zhua YQ, Hsu WK, Terrones H, Grobert N, Chang BH, Terrones M, Wei BQ, Kroto HW, Walton DRM, Boothroyd CB, Kinloch I, Chen GZ, Windle AH, Fray DJ (2000) Morphology, structure and growth of WS2 nanotubes. J Mater Chem 10:2570–2577CrossRef
50.
Zurück zum Zitat Ma C, Zhou M, Wu D, Feng M, Liu X, Huo P, Shi W, Ma Z, Yan Y (2015) One-step hydrothermal synthesis of cobalt and potassium codoped CdSe quantum dots with high visible light photocatalytic activity. Cryst Eng Comm 17:1701–1709CrossRef Ma C, Zhou M, Wu D, Feng M, Liu X, Huo P, Shi W, Ma Z, Yan Y (2015) One-step hydrothermal synthesis of cobalt and potassium codoped CdSe quantum dots with high visible light photocatalytic activity. Cryst Eng Comm 17:1701–1709CrossRef
51.
Zurück zum Zitat Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS (2005) Size-dependent properties of CdSe quantum dots. Phys Rev B 71:201307CrossRef Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS (2005) Size-dependent properties of CdSe quantum dots. Phys Rev B 71:201307CrossRef
52.
Zurück zum Zitat Paci B, Generosi A, Bailo D, Caminiti R, De Bettignies R, Albertini VR (2011) Structural/morphological monitoring approach to stability and durability issues of photoactive films for organic solar cells. Chem Phys Lett 504:216–220CrossRef Paci B, Generosi A, Bailo D, Caminiti R, De Bettignies R, Albertini VR (2011) Structural/morphological monitoring approach to stability and durability issues of photoactive films for organic solar cells. Chem Phys Lett 504:216–220CrossRef
53.
Zurück zum Zitat Vongsaysy U, Bassani DM, Servant L, Pavageau B, Wantz G, Aziz H (2014) Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review. J Photon Energy 4(1):040998CrossRef Vongsaysy U, Bassani DM, Servant L, Pavageau B, Wantz G, Aziz H (2014) Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review. J Photon Energy 4(1):040998CrossRef
54.
Zurück zum Zitat Paci B, Generosi A, Bailo D, Rossi Albertini V, de Bettignes R (2010) Discriminating bulk, surface and interface aging effects in polymer-based active materials for efficient photovoltaic devices. Chem Phys Lett 494:69–74CrossRef Paci B, Generosi A, Bailo D, Rossi Albertini V, de Bettignes R (2010) Discriminating bulk, surface and interface aging effects in polymer-based active materials for efficient photovoltaic devices. Chem Phys Lett 494:69–74CrossRef
55.
Zurück zum Zitat Gomez ED, Barteau KP, Wang H, Toneyc MF, Loo Y-L (2011) Correlating the scattered intensities of P3HT and PCBM to the current densities of polymer solar cells. Chem Commun 47:436–438CrossRef Gomez ED, Barteau KP, Wang H, Toneyc MF, Loo Y-L (2011) Correlating the scattered intensities of P3HT and PCBM to the current densities of polymer solar cells. Chem Commun 47:436–438CrossRef
56.
Zurück zum Zitat Scavia G, Agostinelli E, Laureti S, Varvaro G, Kaciulis S, Mezzi A, Paci B, Generosi A, Rossi Albertini V (2006) Evolution of the Pt layer deposited on MgO (001) by PLD as a function of the deposition paramenters: a scanning tunneling microscopy and energy dispersive X-ray diffactrometry/reflectometry study. J Phys Chem B 110:5529–5536CrossRef Scavia G, Agostinelli E, Laureti S, Varvaro G, Kaciulis S, Mezzi A, Paci B, Generosi A, Rossi Albertini V (2006) Evolution of the Pt layer deposited on MgO (001) by PLD as a function of the deposition paramenters: a scanning tunneling microscopy and energy dispersive X-ray diffactrometry/reflectometry study. J Phys Chem B 110:5529–5536CrossRef
57.
Zurück zum Zitat Naffakh M, Marco C, Ellis G (2014) Biopolymer nanocomposites based on poly(hydroxybutyrate-co- hydroxyvalerate) and WS2 inorganic nanotubes. Cryst Eng Comm 16:5062–5072CrossRef Naffakh M, Marco C, Ellis G (2014) Biopolymer nanocomposites based on poly(hydroxybutyrate-co- hydroxyvalerate) and WS2 inorganic nanotubes. Cryst Eng Comm 16:5062–5072CrossRef
58.
Zurück zum Zitat Naffakh M, Marco C, Ellis G (2014) Inorganic WS2 nanotubes that improve the crystallization behavior of poly(3-hydroxybutyrate). Cryst Eng Comm 16:1126–1135CrossRef Naffakh M, Marco C, Ellis G (2014) Inorganic WS2 nanotubes that improve the crystallization behavior of poly(3-hydroxybutyrate). Cryst Eng Comm 16:1126–1135CrossRef
59.
Zurück zum Zitat Tan F, Qu S, Jiang Q, Chen C, Zhang W, Wang Z (2013) Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells. Nanoscale Res Lett 8(1):434CrossRef Tan F, Qu S, Jiang Q, Chen C, Zhang W, Wang Z (2013) Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells. Nanoscale Res Lett 8(1):434CrossRef
60.
Zurück zum Zitat Tan F, Qu S, Zhang X, Liu K, Wang Z (2013) Synthesis of silver quantum dots decorated TiO2 nanotubes and their incorporation in organic hybrid solar cells. J Nanopart Res 15(8):1844–1849CrossRef Tan F, Qu S, Zhang X, Liu K, Wang Z (2013) Synthesis of silver quantum dots decorated TiO2 nanotubes and their incorporation in organic hybrid solar cells. J Nanopart Res 15(8):1844–1849CrossRef
61.
Zurück zum Zitat Torchynska TV, Diaz Cano A, Dybiec M, Ostapenko S, Morales Rodrigez M, Jiménez-Sandoval S, Vorobiev Y, Phelan C, Zajac A, Zhukov T, Sellers T (2007) Raman scattering and SEM study of bio-conjugated core-shell CdSe/ZnS quantum dots. Phys Stat Solidi C 4:241–243CrossRef Torchynska TV, Diaz Cano A, Dybiec M, Ostapenko S, Morales Rodrigez M, Jiménez-Sandoval S, Vorobiev Y, Phelan C, Zajac A, Zhukov T, Sellers T (2007) Raman scattering and SEM study of bio-conjugated core-shell CdSe/ZnS quantum dots. Phys Stat Solidi C 4:241–243CrossRef
62.
Zurück zum Zitat Virsek M, Jesih A, Milosevic I, Damnjanovic M, Remskar M (2007) Raman scattering of the MoS2 and WS2 single nanotubes. Surf Sci 601:2868–2872CrossRef Virsek M, Jesih A, Milosevic I, Damnjanovic M, Remskar M (2007) Raman scattering of the MoS2 and WS2 single nanotubes. Surf Sci 601:2868–2872CrossRef
63.
Zurück zum Zitat Krause M, Virsek M, Remskar M, Salacan N, Fleischer N, Chen LH, Hatto P, Kolitsch A, Moller W (2009) Diameter and morphology dependent raman signatures of WS2 nanostructures. Chem Phys Chem 10:2221–2225CrossRef Krause M, Virsek M, Remskar M, Salacan N, Fleischer N, Chen LH, Hatto P, Kolitsch A, Moller W (2009) Diameter and morphology dependent raman signatures of WS2 nanostructures. Chem Phys Chem 10:2221–2225CrossRef
64.
Zurück zum Zitat Reddy CS, Zak A, Zussman E (2011) WS2 nanotubes embedded in PMMA nanofibers as energy absorptive material. J Mater Chem 21:16086–16093CrossRef Reddy CS, Zak A, Zussman E (2011) WS2 nanotubes embedded in PMMA nanofibers as energy absorptive material. J Mater Chem 21:16086–16093CrossRef
Metadaten
Titel
Structural morphological and optical properties of P3HT/CdSe/WS2 ternary composites for hybrid organic/inorganic photovoltaics
verfasst von
A. Generosi
M. Guaragno
T. Di Luccio
C. Borriello
A. Bruno
B. Paci
Publikationsdatum
04.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1147-x

Weitere Artikel der Ausgabe 16/2017

Journal of Materials Science 16/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.