Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 16/2019

31.07.2019

Structural, optical and impedance spectroscopic studies of lead-free 0.2(K0.5Bi0.5TiO3)–0.8(NaNbO3) solid solution

verfasst von: S. K. Mohanty, Krishnamayee Bhoi, Banarji Behera, S. Behera, Piyush R. Das

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polycrystalline, lead free ceramic, 0.2(K0.5Bi0.5TiO3)–0.8(NaNbO3) is prepared by high temperature mixed oxide method. Experimental studies reveal the structural and vibrational and ferroelectric properties of the ceramic. The micro structural study exhibits that small grains are distributed uniformly throughout the surface with well-defined grain boundaries and few pores. The structural analysis illustrates that the compound is formed exhibiting the structure as orthorhombic at room temperature with space group Pmc21. While adding the NaNbO3(NN) on K0.5Bi0.5TiO3 (KBT), the vibrational phonon modes undergoes a notable change, as envisaged from the FTIR spectra. From the diffuse absorbance spectra, the optical band gap is found as 3.14 eV and useful for photo catalytic application. Raman spectra exhibit different vibrational modes in the frequency ranging from 130 to 900 cm−1. Polarization study confirms the presence of ferroelectricity. Dielectric analysis infers that phase transition temperature from ferroelectric to paraelectric is observed around 500 °C. The electrical parameters related to microstructure are reflected from impedance analysis. The frequency dependent ac conductivity depends upon frequency validating Jonscher’s power law. While increasing temperature, ac conductivity increases which represents the semiconducting nature of the sample. The bulk conductivity is found to be driven by thermally activated process following Arrhenius relation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797 (1999)CrossRef G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797 (1999)CrossRef
2.
Zurück zum Zitat M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. ElectroCeram. 13, 385 (2004)CrossRef M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. ElectroCeram. 13, 385 (2004)CrossRef
3.
Zurück zum Zitat O. Raymond, R. Font, J. Portelles, J.M. Siqueiros, Magnetoelectric coupling study in multiferroic Pb(Fe0.5Nb0.5)O3 ceramics through small and large electric signal standard measurements. J. Appl. Phys. 109, 094106 (2011)CrossRef O. Raymond, R. Font, J. Portelles, J.M. Siqueiros, Magnetoelectric coupling study in multiferroic Pb(Fe0.5Nb0.5)O3 ceramics through small and large electric signal standard measurements. J. Appl. Phys. 109, 094106 (2011)CrossRef
4.
Zurück zum Zitat P.V.B. Rao, E.V. Ramana, T.B. Sankaram, Electrical properties of K0.5Bi0.5TiO3. J. Alloys Compd. 467, 293 (2009)CrossRef P.V.B. Rao, E.V. Ramana, T.B. Sankaram, Electrical properties of K0.5Bi0.5TiO3. J. Alloys Compd. 467, 293 (2009)CrossRef
5.
Zurück zum Zitat Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3. Jpn. J. Appl. Phys. 44, 5040 (2007)CrossRef Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3. Jpn. J. Appl. Phys. 44, 5040 (2007)CrossRef
6.
Zurück zum Zitat G.A. Babu, R. Subhramanyam, I. Bhaumik, S. Ganeshmoorthy, P. Ramasamy, P.K. Gupta, Growth and characterization of undoped and Mn doped lead-free piezoelectric NBT–KBT single crystals. Mater. Res. Bull. 53, 136 (2014)CrossRef G.A. Babu, R. Subhramanyam, I. Bhaumik, S. Ganeshmoorthy, P. Ramasamy, P.K. Gupta, Growth and characterization of undoped and Mn doped lead-free piezoelectric NBT–KBT single crystals. Mater. Res. Bull. 53, 136 (2014)CrossRef
7.
Zurück zum Zitat J. Guo, M. Zhu, L. Li, M. Zheng, Y. Hou, Relaxor to ferroelectric crossover in KBT ceramics by prolonged annealing. J. Alloys Compd. 703, 448 (2017)CrossRef J. Guo, M. Zhu, L. Li, M. Zheng, Y. Hou, Relaxor to ferroelectric crossover in KBT ceramics by prolonged annealing. J. Alloys Compd. 703, 448 (2017)CrossRef
8.
Zurück zum Zitat Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang, H. Yan, Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique. J. Cryst. Growth 273, 500 (2005)CrossRef Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang, H. Yan, Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique. J. Cryst. Growth 273, 500 (2005)CrossRef
9.
Zurück zum Zitat T. Karthik, S. Asthana, Enhanced mechanical and ferroelectric properties through grain size refinement in site specific substituted lead free Na0.5−xKxBi0.5TiO3 (x = 0–0.10) ceramics. Mater. Lett. 190, 273 (2017)CrossRef T. Karthik, S. Asthana, Enhanced mechanical and ferroelectric properties through grain size refinement in site specific substituted lead free Na0.5−xKxBi0.5TiO3 (x = 0–0.10) ceramics. Mater. Lett. 190, 273 (2017)CrossRef
10.
Zurück zum Zitat H. Xie, L. Jin, D. Shen, X. Wang, G. Shen, Morphotropic phase boundary, segregation effect and crystal growth in the NBT–KBT system. J. Cryst. Growth 311, 3626 (2009)CrossRef H. Xie, L. Jin, D. Shen, X. Wang, G. Shen, Morphotropic phase boundary, segregation effect and crystal growth in the NBT–KBT system. J. Cryst. Growth 311, 3626 (2009)CrossRef
11.
Zurück zum Zitat B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971) B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)
12.
Zurück zum Zitat S. Lanfredi, M.H. Lente, J.A. Eiras, Phase transition at low temperature in ceramic. Appl. Phys. Lett. 80, 2731 (2002)CrossRef S. Lanfredi, M.H. Lente, J.A. Eiras, Phase transition at low temperature in ceramic. Appl. Phys. Lett. 80, 2731 (2002)CrossRef
13.
Zurück zum Zitat S. Tripathi, D. Pandey, S.K. Mirshra, P.S.R. Krishna, Morphotropic phase-boundary-like characteristic in a lead-free and non-ferroelectric (1 − x)NaNbO3–xCaTiO3 system. Phys. Rev. B 77, 052104 (2008)CrossRef S. Tripathi, D. Pandey, S.K. Mirshra, P.S.R. Krishna, Morphotropic phase-boundary-like characteristic in a lead-free and non-ferroelectric (1 − x)NaNbO3–xCaTiO3 system. Phys. Rev. B 77, 052104 (2008)CrossRef
14.
Zurück zum Zitat J.T. Zeng, K.W. Kwok, H.L.W. Chan, Ferroelectric and piezoelectric properties of Na1−xBaxNb1−xTixO3 ceramics. J. Am. Ceram. Soc. 89, 2828 (2006) J.T. Zeng, K.W. Kwok, H.L.W. Chan, Ferroelectric and piezoelectric properties of Na1−xBaxNb1−xTixO3 ceramics. J. Am. Ceram. Soc. 89, 2828 (2006)
15.
Zurück zum Zitat M.T. Benlahrache, N. Benhamla, S. Achour, Dielectric properties of BaTiO3–NaNbO3 composites. J. Euro. Ceram. Soc. 24, 1493 (2004)CrossRef M.T. Benlahrache, N. Benhamla, S. Achour, Dielectric properties of BaTiO3–NaNbO3 composites. J. Euro. Ceram. Soc. 24, 1493 (2004)CrossRef
16.
Zurück zum Zitat H. Wu, A. Navrotsky, Y. Su, M.L. Balmer, Perovskite solid solutions along the NaNbO3–SrTiO3 join: phase transitions, formation enthalpies, and implications for general perovskite energetics. Chem. Mater. 17, 1880 (2005)CrossRef H. Wu, A. Navrotsky, Y. Su, M.L. Balmer, Perovskite solid solutions along the NaNbO3–SrTiO3 join: phase transitions, formation enthalpies, and implications for general perovskite energetics. Chem. Mater. 17, 1880 (2005)CrossRef
17.
Zurück zum Zitat D. Lin, K.W. Kwok, J. Mater. Sci. 21, 1060 (2010) D. Lin, K.W. Kwok, J. Mater. Sci. 21, 1060 (2010)
18.
Zurück zum Zitat J. Rodriguez-Carvajal, FullProf: a program for Rietveld refinement and profile matching analysis of complex powder diffraction patterns. An introduction to the Program FullProf 2000. FULLPROF Suite Program (3.00), Version 201 J. Rodriguez-Carvajal, FullProf: a program for Rietveld refinement and profile matching analysis of complex powder diffraction patterns. An introduction to the Program FullProf 2000. FULLPROF Suite Program (3.00), Version 201
19.
Zurück zum Zitat A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154 (2012)CrossRef A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154 (2012)CrossRef
21.
Zurück zum Zitat D.C. Ling, Z. Shan-Tao, L. Ming-Hui, G. Zheng-Bin, C. Guang-Xu, W. Jia, C. Yan-Feng, Raman spectroscopic study of ceramic Sr2Bi4Ti5O18. Chin. Phys. 15, 0854 (2006)CrossRef D.C. Ling, Z. Shan-Tao, L. Ming-Hui, G. Zheng-Bin, C. Guang-Xu, W. Jia, C. Yan-Feng, Raman spectroscopic study of ceramic Sr2Bi4Ti5O18. Chin. Phys. 15, 0854 (2006)CrossRef
22.
Zurück zum Zitat M. Karpierz, J. Suchanicz, K. Konieczny, D. Sitko, P. Marchet, U. Lehuczuk, Thermal, Raman and dielectric study of 05K0.5Bi0.5TiO3–0.5PbTiO3 ceramics. Phase Transit. 88, 662 (2015)CrossRef M. Karpierz, J. Suchanicz, K. Konieczny, D. Sitko, P. Marchet, U. Lehuczuk, Thermal, Raman and dielectric study of 05K0.5Bi0.5TiO3–0.5PbTiO3 ceramics. Phase Transit. 88, 662 (2015)CrossRef
23.
Zurück zum Zitat R.M. Pittman, A.T. Bell, Raman studies of the structure of niobium oxide/titanium oxide (Nb2O5·TiO2). J. Phys. Chem. 97, 12178 (1993)CrossRef R.M. Pittman, A.T. Bell, Raman studies of the structure of niobium oxide/titanium oxide (Nb2O5·TiO2). J. Phys. Chem. 97, 12178 (1993)CrossRef
24.
Zurück zum Zitat H. Idink, V. Srikanth, W.B. White, E.C. Subbarao, Raman study of low temperature phase transitions in bismuth titanate, Bi4Ti3O12. J. Appl. Phys. 76, 1819 (1994)CrossRef H. Idink, V. Srikanth, W.B. White, E.C. Subbarao, Raman study of low temperature phase transitions in bismuth titanate, Bi4Ti3O12. J. Appl. Phys. 76, 1819 (1994)CrossRef
25.
Zurück zum Zitat M.F. Mostafa, S.S. Ata-Allah, A.A.A. Youssef, H.S. Refai, Electric and AC magnetic investigation of the manganites La0.7Ca0.3Mn0.96In0.04xAl(1−x)0.04O3; (0.0 ≤ x ≤ 1.0). J. Magn. Magn. Mater. 320, 344 (2008)CrossRef M.F. Mostafa, S.S. Ata-Allah, A.A.A. Youssef, H.S. Refai, Electric and AC magnetic investigation of the manganites La0.7Ca0.3Mn0.96In0.04xAl(1−x)0.04O3; (0.0 ≤ x ≤ 1.0). J. Magn. Magn. Mater. 320, 344 (2008)CrossRef
26.
Zurück zum Zitat S. Coste, A. Lecomte, P. Thomas, T. Merle-Mejean, J.C. Champarnaud-Mesjard, Sol–gel synthesis of TeO2-based materials using citric acid as hydrolysis modifier. J. Sol-Gel Sci. Technol. 41, 79 (2007)CrossRef S. Coste, A. Lecomte, P. Thomas, T. Merle-Mejean, J.C. Champarnaud-Mesjard, Sol–gel synthesis of TeO2-based materials using citric acid as hydrolysis modifier. J. Sol-Gel Sci. Technol. 41, 79 (2007)CrossRef
27.
Zurück zum Zitat E.A. Perianu, I.A. Gorodea, F. Gheorghiu, A.V. Sandu, A.C. Ianculescu, I. Sandu, A.R. Iordan, M.N. Palamaru, Rev. Chim. (Buchar.) 62(1), 17–20 (2011) E.A. Perianu, I.A. Gorodea, F. Gheorghiu, A.V. Sandu, A.C. Ianculescu, I. Sandu, A.R. Iordan, M.N. Palamaru, Rev. Chim. (Buchar.) 62(1), 17–20 (2011)
28.
Zurück zum Zitat B.N. Parida, R.K. Parida, A. Panda, Multi-ferroic and optical spectroscopy properties of (Bi0.5Sr0.5) (Fe0.5Ti0.5) O3 solid solution. J. Alloys Compd. 696, 338 (2017)CrossRef B.N. Parida, R.K. Parida, A. Panda, Multi-ferroic and optical spectroscopy properties of (Bi0.5Sr0.5) (Fe0.5Ti0.5) O3 solid solution. J. Alloys Compd. 696, 338 (2017)CrossRef
29.
Zurück zum Zitat Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Dielectric relaxation properties of perovskite-pyrochlore biphase ceramics. Appl. Phys. Lett. 87, 142906-3 (2005)CrossRef Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Dielectric relaxation properties of perovskite-pyrochlore biphase ceramics. Appl. Phys. Lett. 87, 142906-3 (2005)CrossRef
30.
Zurück zum Zitat R. Roukos, N. Zaiter, D. Chaumont, Relaxor behaviour and phase transition of perovskite ferroelectrics-type complex oxides (1−x)Na0.5Bi0.5TiO3–xCaTiO3 system. J. Adv. Ceram. 7, 124 (2018)CrossRef R. Roukos, N. Zaiter, D. Chaumont, Relaxor behaviour and phase transition of perovskite ferroelectrics-type complex oxides (1−x)Na0.5Bi0.5TiO3–xCaTiO3 system. J. Adv. Ceram. 7, 124 (2018)CrossRef
31.
Zurück zum Zitat J.R. Macdonald, Impedance spectroscopy emphasizing solid materials and systems (Chap. 4) (Wiley, New York, 1987) J.R. Macdonald, Impedance spectroscopy emphasizing solid materials and systems (Chap. 4) (Wiley, New York, 1987)
32.
Zurück zum Zitat J.R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13, 147 (1984)CrossRef J.R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13, 147 (1984)CrossRef
33.
Zurück zum Zitat B. Behera, P. Nayak, R.N.P. Choudhary, Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull. 43, 401 (2008)CrossRef B. Behera, P. Nayak, R.N.P. Choudhary, Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull. 43, 401 (2008)CrossRef
34.
Zurück zum Zitat Hari S. Mohanty, A. Kumar, P.K. BalaramSahoo, Dillip K. Kurliya, Pradhan, Impedance spectroscopic study on microwave sintered (1 − x)Na0.5Bi0.5TiO3−x BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 29, 6966 (2018)CrossRef Hari S. Mohanty, A. Kumar, P.K. BalaramSahoo, Dillip K. Kurliya, Pradhan, Impedance spectroscopic study on microwave sintered (1 − x)Na0.5Bi0.5TiO3−x BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 29, 6966 (2018)CrossRef
35.
Zurück zum Zitat S.R. Mohaptra, B. Sahu, T. Badapanda, M.S. Pattanaik, S.D. Kaushik, A.K. Singh, Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics. J. Mater. Sci. 27, 3645 (2016) S.R. Mohaptra, B. Sahu, T. Badapanda, M.S. Pattanaik, S.D. Kaushik, A.K. Singh, Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics. J. Mater. Sci. 27, 3645 (2016)
36.
Zurück zum Zitat A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)CrossRef A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)CrossRef
37.
Zurück zum Zitat C.K. Suman, K. Prasad, R.N.P. Choudhary, Complex impedance studies on tungsten–bronze electro ceramic: Pb2Bi3LaTi5O18. J. Mater. Sci. 41, 369 (2006)CrossRef C.K. Suman, K. Prasad, R.N.P. Choudhary, Complex impedance studies on tungsten–bronze electro ceramic: Pb2Bi3LaTi5O18. J. Mater. Sci. 41, 369 (2006)CrossRef
38.
Zurück zum Zitat D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989)CrossRef D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989)CrossRef
39.
Zurück zum Zitat D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 024102 (2009)CrossRef D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 024102 (2009)CrossRef
40.
Zurück zum Zitat M.A.L. Nobre, S. Lanfredi, Ferroelectric state analysis in grain boundary of Na0.85Li0.15NbO3 ceramic. J. Appl. Phys. 93, 5557 (2003)CrossRef M.A.L. Nobre, S. Lanfredi, Ferroelectric state analysis in grain boundary of Na0.85Li0.15NbO3 ceramic. J. Appl. Phys. 93, 5557 (2003)CrossRef
41.
Zurück zum Zitat P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Electrical properties of Li2BiV5O15 ceramics. Physica B 395, 98 (2007)CrossRef P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Electrical properties of Li2BiV5O15 ceramics. Physica B 395, 98 (2007)CrossRef
42.
Zurück zum Zitat I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975)CrossRef I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975)CrossRef
43.
Zurück zum Zitat P. Ganguly, A.K. Jha, K.L. Deori, Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Solid State Commun. 146, 472 (2008)CrossRef P. Ganguly, A.K. Jha, K.L. Deori, Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Solid State Commun. 146, 472 (2008)CrossRef
44.
Zurück zum Zitat N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179, 689 (2008)CrossRef N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179, 689 (2008)CrossRef
45.
Zurück zum Zitat K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111 (1993)CrossRef K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111 (1993)CrossRef
46.
Zurück zum Zitat N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4. Phys Rev. B 77, 014111 (2008)CrossRef N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4. Phys Rev. B 77, 014111 (2008)CrossRef
47.
Zurück zum Zitat B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J. Phys. D 44, 355402 (2011)CrossRef B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J. Phys. D 44, 355402 (2011)CrossRef
Metadaten
Titel
Structural, optical and impedance spectroscopic studies of lead-free 0.2(K0.5Bi0.5TiO3)–0.8(NaNbO3) solid solution
verfasst von
S. K. Mohanty
Krishnamayee Bhoi
Banarji Behera
S. Behera
Piyush R. Das
Publikationsdatum
31.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 16/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01939-0

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science: Materials in Electronics 16/2019 Zur Ausgabe

Neuer Inhalt