Skip to main content
Erschienen in: Computational Mechanics 2/2019

05.07.2018 | Original Paper

Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression

verfasst von: Zongliang Du, Weisheng Zhang, Yupeng Zhang, Riye Xue, Xu Guo

Erschienen in: Computational Mechanics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many materials show asymmetric performance under tension and compression and their mechanical property can be well simulated by a so-called bi-modulus type constitutive relation. The underlying non-smoothness nature associated with this kind of constitutive behavior, however, makes it extremely difficult to investigate structural topology optimization problems involving bi-modulus materials. In the present paper, rigorous sensitivity results and efficient solution procedure for topology optimization problems involving a single-phase bi-modulus material are established and generalized to two-phase bi-modulus materials case. The validity and effectiveness of the proposed approach are verified by analytical solutions and numerical results. It is also found that the optimal structural topologies may be highly dependent on the tension to compression modulus ratios and quite different from the one obtained under the assumption of linear elasticity. Besides, the present results can be successfully used for engineering applications such as design of no-tension/no-compression structures and strut-and-tie models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Yang XW, Lee JS, Kim YY (2016) Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. J Sound Vib 383:89–107CrossRef Yang XW, Lee JS, Kim YY (2016) Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. J Sound Vib 383:89–107CrossRef
2.
Zurück zum Zitat Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transf 100:876–891CrossRef Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transf 100:876–891CrossRef
3.
Zurück zum Zitat Xue R, Li R, Du Z, Zhang W, Zhu Y, Sun Z, Guo X (2017) Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization. Extreme Mech Lett 15:139–144CrossRef Xue R, Li R, Du Z, Zhang W, Zhu Y, Sun Z, Guo X (2017) Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization. Extreme Mech Lett 15:139–144CrossRef
4.
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1:193–202CrossRef
6.
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336CrossRef
7.
Zurück zum Zitat Bendsøe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, BerlinMATH Bendsøe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, BerlinMATH
8.
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefMATH
9.
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetCrossRefMATH Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetCrossRefMATH
10.
Zurück zum Zitat Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318CrossRefMATH Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318CrossRefMATH
11.
Zurück zum Zitat Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRef
12.
Zurück zum Zitat Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15:1031–1048CrossRefMATH Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15:1031–1048CrossRefMATH
13.
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically: a new moving morphable components based framework. J Appl Mech 81:081009CrossRef Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically: a new moving morphable components based framework. J Appl Mech 81:081009CrossRef
14.
Zurück zum Zitat Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748MathSciNetCrossRef Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748MathSciNetCrossRef
15.
Zurück zum Zitat Zhang W, Yang W, Zhou J, Li D, Guo X (2017) Structural topology optimization through explicit boundary evolution. J Appl Mech 84:011011CrossRef Zhang W, Yang W, Zhou J, Li D, Guo X (2017) Structural topology optimization through explicit boundary evolution. J Appl Mech 84:011011CrossRef
16.
Zurück zum Zitat Ambartsumyan SA (1986) Elasticity theory of different moduli. China Railway Publishing House, Beijing Ambartsumyan SA (1986) Elasticity theory of different moduli. China Railway Publishing House, Beijing
17.
Zurück zum Zitat Janmey PA, McCormick ME, Rammensee S, Leight JL, Georges PC, MacKintosh FC (2007) Negative normal stress in semiflexible biopolymer gels. Nat Mater 6:48–51CrossRef Janmey PA, McCormick ME, Rammensee S, Leight JL, Georges PC, MacKintosh FC (2007) Negative normal stress in semiflexible biopolymer gels. Nat Mater 6:48–51CrossRef
18.
Zurück zum Zitat Ambartsumyan SA (1965) The axisymmetric problem of circular cylindrical shell made of materials with different stiffnesses in tension and compression. Izv Akad Nauk SSSR Mekh 4:77–85 Ambartsumyan SA (1965) The axisymmetric problem of circular cylindrical shell made of materials with different stiffnesses in tension and compression. Izv Akad Nauk SSSR Mekh 4:77–85
19.
Zurück zum Zitat Ambartsumyan SA, Khachatryan AA (1966) Basic equations in the theory of elasticity for materials with different stiffness in tension and compression. Mech Solids 1:29–34 Ambartsumyan SA, Khachatryan AA (1966) Basic equations in the theory of elasticity for materials with different stiffness in tension and compression. Mech Solids 1:29–34
20.
Zurück zum Zitat Sun JY, Xia S, Moon MW, Oh KH, Kim KS (2012) Folding wrinkles of a thin stiff layer on a soft substrate. Proc R Soc A 468:932–953CrossRef Sun JY, Xia S, Moon MW, Oh KH, Kim KS (2012) Folding wrinkles of a thin stiff layer on a soft substrate. Proc R Soc A 468:932–953CrossRef
21.
Zurück zum Zitat Notbohm J, Lesman A, Rosakis P, Tirrell DA, Ravichandran G (2015) Microbuckling of fibrin provides a mechanism for cell mechanosensing. J R Soc Interface 12:20150320CrossRef Notbohm J, Lesman A, Rosakis P, Tirrell DA, Ravichandran G (2015) Microbuckling of fibrin provides a mechanism for cell mechanosensing. J R Soc Interface 12:20150320CrossRef
22.
Zurück zum Zitat Tibert G (2002) Deployable tensegrity structures for space applications (Ph.D. thesis). Royal Institute of Technology, Stockholm Tibert G (2002) Deployable tensegrity structures for space applications (Ph.D. thesis). Royal Institute of Technology, Stockholm
23.
24.
Zurück zum Zitat Du Z, Guo X (2014) Variational principles and the related bounding theorems for bi-modulus materials. J Mech Phys Solids 73:183–211MathSciNetCrossRefMATH Du Z, Guo X (2014) Variational principles and the related bounding theorems for bi-modulus materials. J Mech Phys Solids 73:183–211MathSciNetCrossRefMATH
25.
Zurück zum Zitat Zhang HW, Zhang L, Gao Q (2011) An efficient computational method for mechanical analysis of bimodular structures based on parametric variational principle. Comput Struct 89:2352–2360CrossRef Zhang HW, Zhang L, Gao Q (2011) An efficient computational method for mechanical analysis of bimodular structures based on parametric variational principle. Comput Struct 89:2352–2360CrossRef
26.
Zurück zum Zitat Zhang L, Gao Q, Zhang HW (2014) Analysis of 2-D bimodular materials and wrinkled membranes based on the parametric variational principle and co-rotational approach. Int J Numer Methods Eng 98:721–746MathSciNetCrossRefMATH Zhang L, Gao Q, Zhang HW (2014) Analysis of 2-D bimodular materials and wrinkled membranes based on the parametric variational principle and co-rotational approach. Int J Numer Methods Eng 98:721–746MathSciNetCrossRefMATH
27.
Zurück zum Zitat Zhang L, Zhang HW, Wu J, Yan B (2016) A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials. Acta Mech Sin 32:481–490MathSciNetCrossRefMATH Zhang L, Zhang HW, Wu J, Yan B (2016) A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials. Acta Mech Sin 32:481–490MathSciNetCrossRefMATH
28.
Zurück zum Zitat Zhang L, Dong KJ, Zhang HT, Yan B (2016) A 3D PVP co-rotational formulation for large-displacement and small-strain analysis of bi-modulus materials. Finite Elem Anal Des 110:20–31CrossRef Zhang L, Dong KJ, Zhang HT, Yan B (2016) A 3D PVP co-rotational formulation for large-displacement and small-strain analysis of bi-modulus materials. Finite Elem Anal Des 110:20–31CrossRef
29.
Zurück zum Zitat Zhong WX (1986) On parametric complementary energy variational principle in soil mechanics. Acta Mech Sin 18:253–258MATH Zhong WX (1986) On parametric complementary energy variational principle in soil mechanics. Acta Mech Sin 18:253–258MATH
30.
Zurück zum Zitat Zhong WX, Zhang RL (1988) The parametric variational principle for elastoplasticity. Acta Mech Sin 4:134–137CrossRef Zhong WX, Zhang RL (1988) The parametric variational principle for elastoplasticity. Acta Mech Sin 4:134–137CrossRef
31.
Zurück zum Zitat Zhong WX, Zhang RL (1988) Parametric variational principles and their quadratic programming solutions in plasticity. Comput Struct 30:887–896MathSciNetCrossRefMATH Zhong WX, Zhang RL (1988) Parametric variational principles and their quadratic programming solutions in plasticity. Comput Struct 30:887–896MathSciNetCrossRefMATH
32.
Zurück zum Zitat Zhong WX, Zhang HW, Wu CW (1997) Parametric variational principle and its applications in engineering. Scientific and Technical Publishers, Beijing Zhong WX, Zhang HW, Wu CW (1997) Parametric variational principle and its applications in engineering. Scientific and Technical Publishers, Beijing
33.
Zurück zum Zitat Du Z, Zhang Y, Zhang W, Guo X (2016) A new computational framework for materials with different mechanical responses in tension and compression and its applications. Int J Solids Struct 100:54–73CrossRef Du Z, Zhang Y, Zhang W, Guo X (2016) A new computational framework for materials with different mechanical responses in tension and compression and its applications. Int J Solids Struct 100:54–73CrossRef
34.
Zurück zum Zitat Ran C, Yang H, Zhang G (2018) A gradient based algorithm to solve inverse plane bimodular problems of identification. J Comput Phys 355:78–94MathSciNetCrossRefMATH Ran C, Yang H, Zhang G (2018) A gradient based algorithm to solve inverse plane bimodular problems of identification. J Comput Phys 355:78–94MathSciNetCrossRefMATH
35.
Zurück zum Zitat Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Struct Multidiscip Optim 12:63–74CrossRef Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Struct Multidiscip Optim 12:63–74CrossRef
36.
Zurück zum Zitat Jia H, Misra A, Poorsolhjouy P, Liu C (2017) Optimal structural topology of materials with micro-scale tension–compression asymmetry simulated using granular micromechanics. Mater Des 115:422–432CrossRef Jia H, Misra A, Poorsolhjouy P, Liu C (2017) Optimal structural topology of materials with micro-scale tension–compression asymmetry simulated using granular micromechanics. Mater Des 115:422–432CrossRef
37.
Zurück zum Zitat Ramos AS Jr, Paulino GH (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct Multidiscip Optim 51:287–304MathSciNetCrossRef Ramos AS Jr, Paulino GH (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct Multidiscip Optim 51:287–304MathSciNetCrossRef
38.
Zurück zum Zitat Zhang X, Ramos AS Jr, Paulino GH (2017) Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme. Struct Multidiscip Optim 55:2045–2072MathSciNetCrossRef Zhang X, Ramos AS Jr, Paulino GH (2017) Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme. Struct Multidiscip Optim 55:2045–2072MathSciNetCrossRef
39.
Zurück zum Zitat Chang CJ, Zheng B, Gea HC (2007) Topology optimization for tension/compression only design. In: Proceedings of the 7th WCSMO, Korea, pp. 2488–2495 Chang CJ, Zheng B, Gea HC (2007) Topology optimization for tension/compression only design. In: Proceedings of the 7th WCSMO, Korea, pp. 2488–2495
40.
Zurück zum Zitat Liu S, Qiao H (2011) Topology optimization of continuum structures with different tensile and compressive properties in bridge layout design. Struct Multidiscip Optim 43:369–380CrossRef Liu S, Qiao H (2011) Topology optimization of continuum structures with different tensile and compressive properties in bridge layout design. Struct Multidiscip Optim 43:369–380CrossRef
41.
Zurück zum Zitat Querin OM, Victoria M, Martí P (2010) Topology optimization of truss-like continua with different material properties in tension and compression. Struct Multidiscip Optim 42:25–32CrossRef Querin OM, Victoria M, Martí P (2010) Topology optimization of truss-like continua with different material properties in tension and compression. Struct Multidiscip Optim 42:25–32CrossRef
42.
Zurück zum Zitat Cai K (2011) A simple approach to find optimal topology of a continuum with tension-only or compression-only material. Struct Multidiscip Optim 43:827–835CrossRef Cai K (2011) A simple approach to find optimal topology of a continuum with tension-only or compression-only material. Struct Multidiscip Optim 43:827–835CrossRef
43.
Zurück zum Zitat Cai K, Gao Z, Shi J (2013) Compliance optimization of a continuum with bimodulus material under multiple load cases. Comput Aided Des 45:195–203MathSciNetCrossRef Cai K, Gao Z, Shi J (2013) Compliance optimization of a continuum with bimodulus material under multiple load cases. Comput Aided Des 45:195–203MathSciNetCrossRef
44.
Zurück zum Zitat Cai K, Qin QH, Luo Z, Zhang AJ (2013) Robust topology optimisation of bi-modulus structures. Comput Aided Des 45:1159–1169CrossRef Cai K, Qin QH, Luo Z, Zhang AJ (2013) Robust topology optimisation of bi-modulus structures. Comput Aided Des 45:1159–1169CrossRef
45.
Zurück zum Zitat Cai K, Gao Z, Shi J (2014) Topology optimization of continuum structures with bi-modulus materials. Eng Optim 46:244–260MathSciNetCrossRef Cai K, Gao Z, Shi J (2014) Topology optimization of continuum structures with bi-modulus materials. Eng Optim 46:244–260MathSciNetCrossRef
46.
Zurück zum Zitat Cai K, Cao J, Shi J, Liu L, Qin QH (2016) Optimal layout of multiple bi-modulus materials. Struct Multidiscip Optim 53:801–811MathSciNetCrossRef Cai K, Cao J, Shi J, Liu L, Qin QH (2016) Optimal layout of multiple bi-modulus materials. Struct Multidiscip Optim 53:801–811MathSciNetCrossRef
47.
Zurück zum Zitat Alfano G, Rosati L, Valoroso N (2000) A numerical strategy for finite element analysis of no-tension materials. Int J Numer Methods Eng 48:317–350CrossRefMATH Alfano G, Rosati L, Valoroso N (2000) A numerical strategy for finite element analysis of no-tension materials. Int J Numer Methods Eng 48:317–350CrossRefMATH
48.
Zurück zum Zitat Angelillo M, Cardamone L, Fortunato A (2010) A numerical model for masonry-like structures. J Mech Mater Struct 5:583–615CrossRef Angelillo M, Cardamone L, Fortunato A (2010) A numerical model for masonry-like structures. J Mech Mater Struct 5:583–615CrossRef
49.
Zurück zum Zitat Bruggi M (2014) Finite element analysis of no-tension structures as a topology optimization problem. Struct Multidiscip Optim 50:957–973MathSciNetCrossRef Bruggi M (2014) Finite element analysis of no-tension structures as a topology optimization problem. Struct Multidiscip Optim 50:957–973MathSciNetCrossRef
50.
Zurück zum Zitat Bruggi M, Duysinx P (2013) A stress-based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48:311–326MathSciNetCrossRef Bruggi M, Duysinx P (2013) A stress-based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48:311–326MathSciNetCrossRef
51.
Zurück zum Zitat Guan H, Steven GP, Xie YM (1999) Evolutionary structural optimisation incorporating tension and compression materials. Adv Struct Eng 2:273–288CrossRef Guan H, Steven GP, Xie YM (1999) Evolutionary structural optimisation incorporating tension and compression materials. Adv Struct Eng 2:273–288CrossRef
52.
Zurück zum Zitat Bruggi M (2009) Generating strut-and-tie patterns for reinforced concrete structures using topology optimization. Comput Struct 87:1483–1495CrossRef Bruggi M (2009) Generating strut-and-tie patterns for reinforced concrete structures using topology optimization. Comput Struct 87:1483–1495CrossRef
53.
Zurück zum Zitat Victoria M, Querin OM, Martí P (2011) Generation of strut-and-tie models by topology design using different material properties in tension and compression. Struct Multidiscip Optim 44:247–258CrossRef Victoria M, Querin OM, Martí P (2011) Generation of strut-and-tie models by topology design using different material properties in tension and compression. Struct Multidiscip Optim 44:247–258CrossRef
54.
Zurück zum Zitat Gaynor AT, Guest JK, Moen CD (2012) Reinforced concrete force visualization and design using bilinear truss-continuum topology optimization. J Struct Eng 139:607–618CrossRef Gaynor AT, Guest JK, Moen CD (2012) Reinforced concrete force visualization and design using bilinear truss-continuum topology optimization. J Struct Eng 139:607–618CrossRef
55.
Zurück zum Zitat He XT, Zheng ZL, Sun JY, Li YM, Chen SL (2009) Convergence analysis of a finite element method based on different moduli in tension and compression. Int J Solids Struct 46:3734–3740CrossRefMATH He XT, Zheng ZL, Sun JY, Li YM, Chen SL (2009) Convergence analysis of a finite element method based on different moduli in tension and compression. Int J Solids Struct 46:3734–3740CrossRefMATH
56.
Zurück zum Zitat Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, New YorkMATH Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, New YorkMATH
57.
Zurück zum Zitat Bagley R (1989) Power law and fractional calculus model of viscoelasticity. AIAA J 27:1412–1417CrossRef Bagley R (1989) Power law and fractional calculus model of viscoelasticity. AIAA J 27:1412–1417CrossRef
58.
Zurück zum Zitat Guo X, Jin F, Gao H (2011) Mechanics of non-slipping adhesive contact on a power-law graded elastic half-space. Int J Solids Struct 48:2565–2575CrossRef Guo X, Jin F, Gao H (2011) Mechanics of non-slipping adhesive contact on a power-law graded elastic half-space. Int J Solids Struct 48:2565–2575CrossRef
59.
Zurück zum Zitat Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH
60.
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH
61.
Zurück zum Zitat Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part II: two-material structures. Comput Methods Appl Mech Eng 190:6605–6627CrossRefMATH Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part II: two-material structures. Comput Methods Appl Mech Eng 190:6605–6627CrossRefMATH
62.
Zurück zum Zitat Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88:774–796CrossRefMATH Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88:774–796CrossRefMATH
63.
Zurück zum Zitat Zhang XS, Paulino GH, Ramos AS (2017) Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct Multidiscip Optim 57:161–182MathSciNetCrossRef Zhang XS, Paulino GH, Ramos AS (2017) Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct Multidiscip Optim 57:161–182MathSciNetCrossRef
64.
Zurück zum Zitat Zhang XS, Paulino GH, Ramos AS (2018) Multimaterial topology optimization with multiple volume constraints: Combining the ZPR update with a ground-structure algorithm to select a single material per overlapping set. Int J Numer Methods Eng 114:1053–1073MathSciNetCrossRef Zhang XS, Paulino GH, Ramos AS (2018) Multimaterial topology optimization with multiple volume constraints: Combining the ZPR update with a ground-structure algorithm to select a single material per overlapping set. Int J Numer Methods Eng 114:1053–1073MathSciNetCrossRef
65.
Zurück zum Zitat Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018) Topology optimization with multiple materials via Moving Morphable Component (MMC) method. Int J Numer Methods Eng 113:1653–1675MathSciNetCrossRef Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018) Topology optimization with multiple materials via Moving Morphable Component (MMC) method. Int J Numer Methods Eng 113:1653–1675MathSciNetCrossRef
66.
Zurück zum Zitat Du Z, Guo X (2016) Symmetry analysis for structural optimization problems involving reliability measure and bi-modulus materials. Struct Multidiscip Optim 53:973–984MathSciNetCrossRef Du Z, Guo X (2016) Symmetry analysis for structural optimization problems involving reliability measure and bi-modulus materials. Struct Multidiscip Optim 53:973–984MathSciNetCrossRef
67.
Zurück zum Zitat Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193:469–496MathSciNetCrossRefMATH Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193:469–496MathSciNetCrossRefMATH
68.
Zurück zum Zitat Guo X, Zhang W, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200:3439–3452MathSciNetCrossRefMATH Guo X, Zhang W, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200:3439–3452MathSciNetCrossRefMATH
69.
Zurück zum Zitat Cheng GD, Guo X (1997) \(\varepsilon \)-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13:258–266CrossRef Cheng GD, Guo X (1997) \(\varepsilon \)-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13:258–266CrossRef
70.
Zurück zum Zitat Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478MathSciNetCrossRefMATH Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478MathSciNetCrossRefMATH
Metadaten
Titel
Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression
verfasst von
Zongliang Du
Weisheng Zhang
Yupeng Zhang
Riye Xue
Xu Guo
Publikationsdatum
05.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1597-2

Weitere Artikel der Ausgabe 2/2019

Computational Mechanics 2/2019 Zur Ausgabe

Neuer Inhalt