Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2020

01.08.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Energy of 〈110〉 Symmetric Tilt Boundaries in Polycrystalline Tungsten

verfasst von: M. E. Stupak, M. G. Urazaliev, V. V. Popov

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A computer simulation of the structure and energy of 〈110〉 symmetric tilt boundaries has been performed for polycrystalline tungsten. Calculations have been made using an embedded atom potential implemented in the LAMMPS software. It has been shown that structure of the 〈110〉 symmetric tilt boundaries can consist of a limited number of structural elements. The energy and width of grain boundaries for different misorientations, as well as energies of vacancy formation have been determined via molecular statistics simulation of grain boundaries. The correlation between the energy of vacancy formation in grain boundaries and changes in the boundary structure has been analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995). A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995).
2.
Zurück zum Zitat S. Zinkle and L. Snead, “Designing radiation resistance in materials for fusion energy,” Ann. Rev. Mater. Res. 44, 241–267 (2014).CrossRef S. Zinkle and L. Snead, “Designing radiation resistance in materials for fusion energy,” Ann. Rev. Mater. Res. 44, 241–267 (2014).CrossRef
3.
Zurück zum Zitat D. Maisonnier, D. Campbell, I. Cook, L. D. Pace, L. Giancarli, J. Hayward, A. L. Puma, M. Medrano, P. Norajitra, M. Roccella, P. Sardain, M. Tran, and D. Ward, “Power plant conceptual studies in Europe,” Nucl. Fusion 47, 1524–1532 (2007).CrossRef D. Maisonnier, D. Campbell, I. Cook, L. D. Pace, L. Giancarli, J. Hayward, A. L. Puma, M. Medrano, P. Norajitra, M. Roccella, P. Sardain, M. Tran, and D. Ward, “Power plant conceptual studies in Europe,” Nucl. Fusion 47, 1524–1532 (2007).CrossRef
4.
Zurück zum Zitat M. A. Tschopp and D. L. McDowell, “Structures and energies of Sigma3 asymmetric tilt grain boundaries in Cu and Al,” Phil. Mag. (2007) 3147–3173. M. A. Tschopp and D. L. McDowell, “Structures and energies of Sigma3 asymmetric tilt grain boundaries in Cu and Al,” Phil. Mag. (2007) 3147–3173.
5.
Zurück zum Zitat I. I. Novoselov, A. Yu. Kuksin, and A. V. Yanilkin, “Energies of formation and structures of point defects at tilt grain boundaries in molybdenum,” Phys. Solid State 56, 1349–1355 (2014). I. I. Novoselov, A. Yu. Kuksin, and A. V. Yanilkin, “Energies of formation and structures of point defects at tilt grain boundaries in molybdenum,” Phys. Solid State 56, 1349–1355 (2014).
6.
Zurück zum Zitat I. Novoselov and A. Yanilkin, “Impact of segregated interstitials on structures and energies of tilt grain boundaries in Mo,” Comp. Mater. Sci. 112, 276–281 (2016).CrossRef I. Novoselov and A. Yanilkin, “Impact of segregated interstitials on structures and energies of tilt grain boundaries in Mo,” Comp. Mater. Sci. 112, 276–281 (2016).CrossRef
7.
Zurück zum Zitat T. Frolov, W. Setyawan, R. J. Kurtz, J. Marian, A. R. Oganov, R. E. Rudd, and Q. Zhu, “Grain boundary phases in bcc metals,” Nanoscale 10, 8253–8268 (2018).CrossRef T. Frolov, W. Setyawan, R. J. Kurtz, J. Marian, A. R. Oganov, R. E. Rudd, and Q. Zhu, “Grain boundary phases in bcc metals,” Nanoscale 10, 8253–8268 (2018).CrossRef
8.
Zurück zum Zitat T. Frolov, Q. Zhu, T. Oppelstrup, J. Marian, and R. E. Rudd, “Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects,” Acta Mater. 159, 123–134 (2018).CrossRef T. Frolov, Q. Zhu, T. Oppelstrup, J. Marian, and R. E. Rudd, “Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects,” Acta Mater. 159, 123–134 (2018).CrossRef
9.
Zurück zum Zitat A. V. Vekman and B. F. Dem’yanov, “Structural vacancy model of grain boundaries,” Phys. Met. Metallogr. 120, 50–59 (2019).CrossRef A. V. Vekman and B. F. Dem’yanov, “Structural vacancy model of grain boundaries,” Phys. Met. Metallogr. 120, 50–59 (2019).CrossRef
10.
Zurück zum Zitat M.-C. Marinica, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime, “Interatomic potentials for modelling radiation defects and dislocations in tungsten,” J. Phys.: Condens. Matter 25, 395502 (2013). M.-C. Marinica, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime, “Interatomic potentials for modelling radiation defects and dislocations in tungsten,” J. Phys.: Condens. Matter 25, 395502 (2013).
11.
12.
Zurück zum Zitat A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool Modelling Simul,” Mater. Sci. Eng. 18, 015012 (2010). A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool Modelling Simul,” Mater. Sci. Eng. 18, 015012 (2010).
13.
Zurück zum Zitat A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).CrossRef A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).CrossRef
14.
Zurück zum Zitat D. Scheiber, R. Pippan, P. Puschnig, and L. Romaner, “Ab initio calculations of grain boundaries in bcc metals,” Modell. Simul. Mater. Sci. Eng. 24, 035013 (2016).CrossRef D. Scheiber, R. Pippan, P. Puschnig, and L. Romaner, “Ab initio calculations of grain boundaries in bcc metals,” Modell. Simul. Mater. Sci. Eng. 24, 035013 (2016).CrossRef
15.
Zurück zum Zitat P. Gas, D. L. Beke, and J. Bernardino, “Grain-boundary diffusion: Analysis of the C kinetic regime,” Phil. Mag. Lett. 65, 133–139 (1992).CrossRef P. Gas, D. L. Beke, and J. Bernardino, “Grain-boundary diffusion: Analysis of the C kinetic regime,” Phil. Mag. Lett. 65, 133–139 (1992).CrossRef
16.
Zurück zum Zitat T. Surholt, Yu. Mishin, and Chr. Herzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in type-B and type-C kinetic regimes,” Phys. Rev. B 50, 3577–3587 (1994).CrossRef T. Surholt, Yu. Mishin, and Chr. Herzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in type-B and type-C kinetic regimes,” Phys. Rev. B 50, 3577–3587 (1994).CrossRef
17.
Zurück zum Zitat V. S. Divinski, G. Reglitz, and G. Wilde, “Grain boundary self-diffusion in polycrystalline nickel of different purity levels,” Acta Mater. 58, 386–395 (2010).CrossRef V. S. Divinski, G. Reglitz, and G. Wilde, “Grain boundary self-diffusion in polycrystalline nickel of different purity levels,” Acta Mater. 58, 386–395 (2010).CrossRef
18.
Zurück zum Zitat D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, “Grain boundary width, energy and self-diffusion in nickel: effect of material purity,” Acta Mater. 61, 5188–5197 (2013).CrossRef D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, “Grain boundary width, energy and self-diffusion in nickel: effect of material purity,” Acta Mater. 61, 5188–5197 (2013).CrossRef
19.
Zurück zum Zitat G. J. Thomas, R. W. Siegel, and J. A. Eastman, “Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation,” Scr. Metall. Mater. 24, 201–206 (1990).CrossRef G. J. Thomas, R. W. Siegel, and J. A. Eastman, “Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation,” Scr. Metall. Mater. 24, 201–206 (1990).CrossRef
20.
Zurück zum Zitat B. Fultz, H. Kuwano, and H. Ouyang, “Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition,” J. Appl. Phys. 77, 3458–3466 (1995).CrossRef B. Fultz, H. Kuwano, and H. Ouyang, “Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition,” J. Appl. Phys. 77, 3458–3466 (1995).CrossRef
21.
Zurück zum Zitat H. Rösner, C. T. Koch, and G. Wilde, “Strain mapping along Al–Pb interfaces,” Acta Mater. 58, 162–172 (2010).CrossRef H. Rösner, C. T. Koch, and G. Wilde, “Strain mapping along Al–Pb interfaces,” Acta Mater. 58, 162–172 (2010).CrossRef
22.
Zurück zum Zitat C N. Chen, L.-L. Niu, Y. Zhang, X. Shu, H.-B. Zhou, S. Jin, G. Ran, G.-H. Lu, and F. Gao, “Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten,” Sci. Rep. 6, 36955 (2016).CrossRef C N. Chen, L.-L. Niu, Y. Zhang, X. Shu, H.-B. Zhou, S. Jin, G. Ran, G.-H. Lu, and F. Gao, “Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten,” Sci. Rep. 6, 36955 (2016).CrossRef
23.
Zurück zum Zitat D. Scheiber, V. I. Razumovskiy, P. Puschnig, R. Pippan, and L. Romaner, “Ab initio description of segregation and cohesion of grain boundaries in W–25 at % Re alloys,” Acta Mater. 88, 180–189 (2015).CrossRef D. Scheiber, V. I. Razumovskiy, P. Puschnig, R. Pippan, and L. Romaner, “Ab initio description of segregation and cohesion of grain boundaries in W–25 at % Re alloys,” Acta Mater. 88, 180–189 (2015).CrossRef
Metadaten
Titel
Structure and Energy of 〈110〉 Symmetric Tilt Boundaries in Polycrystalline Tungsten
verfasst von
M. E. Stupak
M. G. Urazaliev
V. V. Popov
Publikationsdatum
01.08.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20080116

Weitere Artikel der Ausgabe 8/2020

Physics of Metals and Metallography 8/2020 Zur Ausgabe