Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 5/2022

01.05.2022 | STRENGTH AND PLASTICITY

Structure and Impact Strength of Weld Joints Manufactured from a Pipe Steel with the Use of Hybrid Laser-Arc Welding

verfasst von: N. A. Tereshchenko, I. L. Yakovleva, M. A. Fedorov, A. B. Gizatullin, T. S. Esiev

Erschienen in: Physics of Metals and Metallography | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The weld joints of pipes with a diameter of 1420 mm and a pipe-wall thickness of 30 mm manufactured by two different technologies have been studied. These technologies were (i) combining the laser arc welding when making a root weld with the subsequent submerged arc welding when applying cap welds and (ii) the method of double-sided submerged arc welding. It has been shown that the first technology leads to the formation of a bainite-based disperse structure in weld joints, thereby providing a tough-ductile character of fracture and an increased level of impact strength for different positions of a notch with respect to the center of a weld joint.
Literatur
1.
Zurück zum Zitat L. I. Efron, Metal Science in “Large” Metallurgy. Pipe Steels (Metallurgizdat, Moscow, 2012) [in Russian]. L. I. Efron, Metal Science in “Large” Metallurgy. Pipe Steels (Metallurgizdat, Moscow, 2012) [in Russian].
2.
Zurück zum Zitat C. Liu and S. D. Bhole, “Challenges and developments in pipeline weldability and mechanical properties,” Sci. Technol. Weld. Joining 18, No. 2, 169–181 (2013). CrossRef C. Liu and S. D. Bhole, “Challenges and developments in pipeline weldability and mechanical properties,” Sci. Technol. Weld. Joining 18, No. 2, 169–181 (2013). CrossRef
3.
Zurück zum Zitat E. Shigeru and N. Naoki, “Development of thermo-mechanical control process (TMCP) and high performance steel in JFE,” JFE Tech. Rep., No. 20, 1–7 (2015). E. Shigeru and N. Naoki, “Development of thermo-mechanical control process (TMCP) and high performance steel in JFE,” JFE Tech. Rep., No. 20, 1–7 (2015).
4.
Zurück zum Zitat A. N. Bortsov, I. P. Shabalov, A. A. Velichko, K. Yu. Mentyukov, and I. Yu. Utkin, “Features of multi-electrode submerged arc welding in the production of high-strength thick-walled pipes,” Metallurg, No. 4, 69–76 (2013). A. N. Bortsov, I. P. Shabalov, A. A. Velichko, K. Yu. Mentyukov, and I. Yu. Utkin, “Features of multi-electrode submerged arc welding in the production of high-strength thick-walled pipes,” Metallurg, No. 4, 69–76 (2013).
5.
Zurück zum Zitat L. A. Efimenko, T. S. Esiev, D. V. Ponomarenko, S. P. Sevast’yanov, and I. Yu. Utkin, “Effect of heat treatment on the impact strength of the metal of welded joints of pipes made by multi-arc submerged arc welding,” Metallurg, No. 3, 59–63 (2018). L. A. Efimenko, T. S. Esiev, D. V. Ponomarenko, S. P. Sevast’yanov, and I. Yu. Utkin, “Effect of heat treatment on the impact strength of the metal of welded joints of pipes made by multi-arc submerged arc welding,” Metallurg, No. 3, 59–63 (2018).
7.
Zurück zum Zitat B. Acherjee, “Hybrid laser arc welding: State-of-art review,” Opt. Laser Technol. 99, 60–71 (2018). CrossRef B. Acherjee, “Hybrid laser arc welding: State-of-art review,” Opt. Laser Technol. 99, 60–71 (2018). CrossRef
8.
Zurück zum Zitat The Theory of Laser Materials Processing. Heat and Mass Transfer in Modern Technology, Ed. by J. Dowden (Springer, Berlin, 2009). The Theory of Laser Materials Processing. Heat and Mass Transfer in Modern Technology, Ed. by J. Dowden (Springer, Berlin, 2009).
9.
Zurück zum Zitat A. P. Romantsov, M. A. Fedorov, A. A. Chernyaev, and A. O. Kotlov, RF Patent No. 2640105 (2017). A. P. Romantsov, M. A. Fedorov, A. A. Chernyaev, and A. O. Kotlov, RF Patent No. 2640105 (2017).
10.
Zurück zum Zitat S. E. Gook, A. V. Gumenyuk, and M. Retmaier, “Hybrid laser-arc welding of high-strength API X80 and X120 pipe steels,” Global’naya Yadernaya Bezopasnost’, No. 1, 21–35 (2017). S. E. Gook, A. V. Gumenyuk, and M. Retmaier, “Hybrid laser-arc welding of high-strength API X80 and X120 pipe steels,” Global’naya Yadernaya Bezopasnost’, No. 1, 21–35 (2017).
11.
Zurück zum Zitat J. Górka, “Structure and properties of hybrid laser arc welded-joints (laser beam – mag) in thermo-mechanical control processed steel S700mc of 10 mm thickness,” Arch. Metall. Mater. 63, No. 3, 1125–1131 (2018). J. Górka, “Structure and properties of hybrid laser arc welded-joints (laser beam – mag) in thermo-mechanical control processed steel S700mc of 10 mm thickness,” Arch. Metall. Mater. 63, No. 3, 1125–1131 (2018).
12.
Zurück zum Zitat I. Yu. Utkin, L. A. Efimenko, V. Yu. Bobrinskaya, and O. E. Kapustin, “Evaluation of the role of vanadium and molybdenum in changing the kinetics of austenite decomposition and the mechanical properties of the simulated overheating zone of low-carbon niobium steels,” Phys. Met. Metallogr. 122, No. 7, 718–724 (2018). CrossRef I. Yu. Utkin, L. A. Efimenko, V. Yu. Bobrinskaya, and O. E. Kapustin, “Evaluation of the role of vanadium and molybdenum in changing the kinetics of austenite decomposition and the mechanical properties of the simulated overheating zone of low-carbon niobium steels,” Phys. Met. Metallogr. 122, No. 7, 718–724 (2018). CrossRef
13.
Zurück zum Zitat L. A. Efimenko, O. E. Kapustin, D. A. Ponomarenko, I. Yu. Utkin, M. A. Fedorov, and A. I. Romantsev, “Features of the formation of the structure and properties of welded joints in laser-hybrid welding of longitudinal pipe joints,” Metallurg, No. 11, 63–68 (2020). L. A. Efimenko, O. E. Kapustin, D. A. Ponomarenko, I. Yu. Utkin, M. A. Fedorov, and A. I. Romantsev, “Features of the formation of the structure and properties of welded joints in laser-hybrid welding of longitudinal pipe joints,” Metallurg, No. 11, 63–68 (2020).
14.
Zurück zum Zitat GOST ISO 3183–2015. Steel Pipes for Pipelines of the Oil and Gas Industry. GOST ISO 3183–2015. Steel Pipes for Pipelines of the Oil and Gas Industry.
15.
Zurück zum Zitat STO Gazprom 2-4.1-713-2013. Technical Requirements for Pipes and Fittings. STO Gazprom 2-4.1-713-2013. Technical Requirements for Pipes and Fittings.
16.
Zurück zum Zitat GOST 6996–66. Methods for Determination of Mechanical Properties. GOST 6996–66. Methods for Determination of Mechanical Properties.
17.
Zurück zum Zitat Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki, “Inverse temperature dependence of toughness in an ultrafine grain-structure steel,” Science 320, No. 5879, 1057–1060 (2008). CrossRef Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki, “Inverse temperature dependence of toughness in an ultrafine grain-structure steel,” Science 320, No. 5879, 1057–1060 (2008). CrossRef
18.
Zurück zum Zitat A. S. Dolzhenko, P. D. Dolzhenko, A. N. Belyakov and R. O. Kaibyshev, “Microstructure and impact toughness of high-strength low-alloy steel after tempforming,” Phys. Met. Metallogr. 122, No. 10, 1014–1022 (2021). CrossRef A. S. Dolzhenko, P. D. Dolzhenko, A. N. Belyakov and R. O. Kaibyshev, “Microstructure and impact toughness of high-strength low-alloy steel after tempforming,” Phys. Met. Metallogr. 122, No. 10, 1014–1022 (2021). CrossRef
19.
Zurück zum Zitat I. L. Yakovleva, N. A. Tereshchenko, D. A. Mirzaev, A. V. Panov, and D. V. Shaburov, “Impact toughness and plastic properties of composite layered samples as compared to monolithic ones,” Phys. Met. Metallogr. 104, No. 2, 203–211 (2007). CrossRef I. L. Yakovleva, N. A. Tereshchenko, D. A. Mirzaev, A. V. Panov, and D. V. Shaburov, “Impact toughness and plastic properties of composite layered samples as compared to monolithic ones,” Phys. Met. Metallogr. 104, No. 2, 203–211 (2007). CrossRef
Metadaten
Titel
Structure and Impact Strength of Weld Joints Manufactured from a Pipe Steel with the Use of Hybrid Laser-Arc Welding
verfasst von
N. A. Tereshchenko
I. L. Yakovleva
M. A. Fedorov
A. B. Gizatullin
T. S. Esiev
Publikationsdatum
01.05.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 5/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22050167

Weitere Artikel der Ausgabe 5/2022

Physics of Metals and Metallography 5/2022 Zur Ausgabe