Skip to main content
Erschienen in: Physics of Metals and Metallography 12/2021

01.12.2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Mechanical Properties of Al–Cu–Mg–Si Alloy Prepared by Selective Laser Melting

verfasst von: I. G. Brodova, A. N. Klenov, I. G. Shirinkina, E. B. Smirnov, N. Yu. Orlova

Erschienen in: Physics of Metals and Metallography | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the physical and additive-manufacturing (3D printing) characteristics on the structure and hardness of monolith and netlike articles fabricated from the Al–Cu–Mg–Si alloy by selective laser melting,—is considered. The structure and hardness of monolith samples, which were synthesized at the laser powers P = 100–200 W, scanning speeds V = 400–950 mm/s, and unchanged both laser beam spot diameters of 60 and 75 µm and powder layer thickness of 0.05 mm,—were compared and analysed. It has been found that the hardness of samples synthesized at Р = 200 W and V = 750–900 mm/s is 50HB10/250; the minimum hardness (less than 28HB10/250) is observed for the samples fabricated at V = 400 mm/s and Р = 100 W. Metallographic studies of the structure of samples exhibit the presence of defects, such as shrinkage voids, hot cracks, and non-melt powder particles. Experimental data indicating the correlation between the build geometry of netlike samples characterized by different filling levels (amount and configuration of the internal construction holes) and their dynamic properties measured by Hopkinson–Kolsky compression tests are obtained. It has been found that the decrease in the density (ρ = 2.44 – 1.19 g/cm3) and increase in the total fraction of hole area in the build plane and plane perpendicular to the build plane from 4 to 86% leads to the decrease in the dynamic mechanical properties, namely, the yield stress and ultimate tensile strength by 3 and by 4.7 times, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. N. Kablov, “Additive technology is the dominant national technology initiative,” Intellekt i Tekhnologii, No. 2 (11), 52–55 (2015). E. N. Kablov, “Additive technology is the dominant national technology initiative,” Intellekt i Tekhnologii, No. 2 (11), 52–55 (2015).
2.
Zurück zum Zitat I. S. Popkova, V. S. Zolotorevskii, and A. N. Solonin, “Production of products from aluminum and its alloys by selective laser melting,” Tekhnologiya Legkikh Splavov, No. 4, 14–24 (2014). I. S. Popkova, V. S. Zolotorevskii, and A. N. Solonin, “Production of products from aluminum and its alloys by selective laser melting,” Tekhnologiya Legkikh Splavov, No. 4, 14–24 (2014).
3.
Zurück zum Zitat E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminium components.,” J. Mater. Process. Technol. 211, 275–284 (2011).CrossRef E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminium components.,” J. Mater. Process. Technol. 211, 275–284 (2011).CrossRef
4.
Zurück zum Zitat T. DebRoy, H. L. Wei, J. S. Zuback, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. Ded, and W. Zhang, “Additive manufacturing of metallic components—Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).CrossRef T. DebRoy, H. L. Wei, J. S. Zuback, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. Ded, and W. Zhang, “Additive manufacturing of metallic components—Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).CrossRef
5.
Zurück zum Zitat D. K. Ryabov, V Antipov, V. A. Korolev, and P. N. Medvedev, “Influence of technological factors on the structure and properties of silumin obtained using selective laser synthesis technology,” Aviatsionnye Materialy i Tekhnologii, No. S1, 44–51 (2016). D. K. Ryabov, V Antipov, V. A. Korolev, and P. N. Medvedev, “Influence of technological factors on the structure and properties of silumin obtained using selective laser synthesis technology,” Aviatsionnye Materialy i Tekhnologii, No. S1, 44–51 (2016).
6.
Zurück zum Zitat E. O. Olakanmi, “Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties,” J. Mater. Process. Technol. 213, 1387–1405 (2013).CrossRef E. O. Olakanmi, “Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties,” J. Mater. Process. Technol. 213, 1387–1405 (2013).CrossRef
7.
Zurück zum Zitat N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimization and mechanical properties development,” Mater. Des. 64, 417–424 (2015).CrossRef N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimization and mechanical properties development,” Mater. Des. 64, 417–424 (2015).CrossRef
8.
Zurück zum Zitat J. Zhao, M. Easton, M. Qian, M. Leary, and M. Brandt, “Effect of building direction on porosity and fatigue life of selective laser melted AlSi12Mg alloy,” Mater. Sci. Eng., A 729, 76–85 (2018).CrossRef J. Zhao, M. Easton, M. Qian, M. Leary, and M. Brandt, “Effect of building direction on porosity and fatigue life of selective laser melted AlSi12Mg alloy,” Mater. Sci. Eng., A 729, 76–85 (2018).CrossRef
9.
Zurück zum Zitat I. G. Brodova, O. A. Chikova, A. N. Petrova, and A. G. Merkushev, “Structure formation and properties of eutectic silumin obtained using selective laser melting,” Phys Met. Metallogr. 120, No. 11, 1109–1114 (2019).CrossRef I. G. Brodova, O. A. Chikova, A. N. Petrova, and A. G. Merkushev, “Structure formation and properties of eutectic silumin obtained using selective laser melting,” Phys Met. Metallogr. 120, No. 11, 1109–1114 (2019).CrossRef
10.
Zurück zum Zitat H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016).CrossRef H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016).CrossRef
11.
Zurück zum Zitat A. B. Spierings, K. Dawson, M. Voegtlin, F. Palm, and P. J. Uggowitzer, “Microstructure and mechanical properties of as-processed scandium modified aluminium using selective laser melting,” Manuf. Technol. 65, 213–216 (2016).CrossRef A. B. Spierings, K. Dawson, M. Voegtlin, F. Palm, and P. J. Uggowitzer, “Microstructure and mechanical properties of as-processed scandium modified aluminium using selective laser melting,” Manuf. Technol. 65, 213–216 (2016).CrossRef
12.
Zurück zum Zitat A. B. Spierings, K. Dawson, T. Heeling, P. J. Uggowitzer, R. Schäublind, F. Palme, and K. Wegener, “Microstructural features of Sc- and Zr-modified Al–Mg alloys processed by selective laser melting,” Mater. Des. 115, 52–63 (2017).CrossRef A. B. Spierings, K. Dawson, T. Heeling, P. J. Uggowitzer, R. Schäublind, F. Palme, and K. Wegener, “Microstructural features of Sc- and Zr-modified Al–Mg alloys processed by selective laser melting,” Mater. Des. 115, 52–63 (2017).CrossRef
13.
Zurück zum Zitat G. Savio, S. Rosso, R. Meneghello, and G. Concheri, “Geometric modeling of cellular materials for additive manufacturing in biomedical field: a review,” Appl. Bionics Biomech., No. 3, 1–14 (2018). G. Savio, S. Rosso, R. Meneghello, and G. Concheri, “Geometric modeling of cellular materials for additive manufacturing in biomedical field: a review,” Appl. Bionics Biomech., No. 3, 1–14 (2018).
14.
Zurück zum Zitat S. V. D’yachenko, L. A. Lebedev, M. M. Sychev, and L. A. Nefedova, “Physicomechanical properties of a model material in the form of a cube with the topology of threefold periodic minimal surfaces of the gyroid type,” Tech. Phys. 63, 984–987 (2018).CrossRef S. V. D’yachenko, L. A. Lebedev, M. M. Sychev, and L. A. Nefedova, “Physicomechanical properties of a model material in the form of a cube with the topology of threefold periodic minimal surfaces of the gyroid type,” Tech. Phys. 63, 984–987 (2018).CrossRef
15.
Zurück zum Zitat A. N. Petrova, I. G. Brodova, and S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, No. 12, 1221–1227 (2019)CrossRef A. N. Petrova, I. G. Brodova, and S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, No. 12, 1221–1227 (2019)CrossRef
16.
Zurück zum Zitat I. G. Shirinkina, I. G. Brodova, D. Yu. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, No. 12, 1193–1202 (2020).CrossRef I. G. Shirinkina, I. G. Brodova, D. Yu. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, No. 12, 1193–1202 (2020).CrossRef
17.
Zurück zum Zitat I. G. Brodova, P. S. Popel’, N. M. Barbin, and N. A. Vatolin, Melts as a Basis for Formation of Structure and Properties of Aluminum Alloys (UrO RAN, Yekaterinburg, 2005) [in Russian]. I. G. Brodova, P. S. Popel’, N. M. Barbin, and N. A. Vatolin, Melts as a Basis for Formation of Structure and Properties of Aluminum Alloys (UrO RAN, Yekaterinburg, 2005) [in Russian].
18.
Zurück zum Zitat N. T. Aboulkhai, I. Maskery, and C. Tuck, “The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment,” Mater. Sci. Eng., A 667, 139–146 (2016).CrossRef N. T. Aboulkhai, I. Maskery, and C. Tuck, “The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment,” Mater. Sci. Eng., A 667, 139–146 (2016).CrossRef
19.
Zurück zum Zitat L. N. Carter, C. Martin, P. J. Withers, and M. M. Attallah, “The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy,” J. Alloy Compd. 615, 338–347 (2014).CrossRef L. N. Carter, C. Martin, P. J. Withers, and M. M. Attallah, “The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy,” J. Alloy Compd. 615, 338–347 (2014).CrossRef
20.
Zurück zum Zitat C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, “Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences,” Additive Manuf. 22, 165–175 (2018).CrossRef C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, “Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences,” Additive Manuf. 22, 165–175 (2018).CrossRef
21.
Zurück zum Zitat S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater. 108, 36–45 (2016).CrossRef S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater. 108, 36–45 (2016).CrossRef
22.
Zurück zum Zitat N. V. Kazantseva, I. V. Ezhov, N. I. Vinogradova, M. V. Il’inykh, A. S. Fefelov, D. I. Davydov, O. A. Oleneva, and M. S. Karabanalov, “Effect of Built geometry on the microstructure and strength characteristics of the Ti–6Al–4V alloy prepared by the selective laser melting,” Phys. Met. Metallogr. 119, No. 11, 1079–1086 (2018).CrossRef N. V. Kazantseva, I. V. Ezhov, N. I. Vinogradova, M. V. Il’inykh, A. S. Fefelov, D. I. Davydov, O. A. Oleneva, and M. S. Karabanalov, “Effect of Built geometry on the microstructure and strength characteristics of the Ti–6Al–4V alloy prepared by the selective laser melting,” Phys. Met. Metallogr. 119, No. 11, 1079–1086 (2018).CrossRef
23.
Zurück zum Zitat N. V. Kazantseva, I. V. Ezhov, D. I. Davydov, and A. G. Merkushev, “Magnetic properties and structure of products from 1.4540 stainless steel manufactured by 3D printing,” Phys. Met. Metallogr. 120, 1270–1275 (2019).CrossRef N. V. Kazantseva, I. V. Ezhov, D. I. Davydov, and A. G. Merkushev, “Magnetic properties and structure of products from 1.4540 stainless steel manufactured by 3D printing,” Phys. Met. Metallogr. 120, 1270–1275 (2019).CrossRef
24.
Zurück zum Zitat I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, I. A. Ashcroft, R. D. Wildman, and R. J. M. Hague, “A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting,” Mater. Sci. Eng., A 670, 264–274 (2016).CrossRef I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, I. A. Ashcroft, R. D. Wildman, and R. J. M. Hague, “A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting,” Mater. Sci. Eng., A 670, 264–274 (2016).CrossRef
25.
26.
Zurück zum Zitat M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image Processing with Image,” J. Biophoton. Int. 11, No. 7, 36–42 (2004). M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image Processing with Image,” J. Biophoton. Int. 11, No. 7, 36–42 (2004).
27.
Zurück zum Zitat A. N. Petrova, I. G. Brodova, and S. V. Razorenov, “Features of fracture of submicrocrystalline Al–Mg–Mn alloy under shock compression,” Pish’ma Zh. Tekh. Fiz. 43, No. 10, 34–41 (2017). A. N. Petrova, I. G. Brodova, and S. V. Razorenov, “Features of fracture of submicrocrystalline Al–Mg–Mn alloy under shock compression,” Pish’ma Zh. Tekh. Fiz. 43, No. 10, 34–41 (2017).
28.
Zurück zum Zitat V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, D. N. Abdullina, E. A. Petukhov, E. B. Smirnov, E. V. Shorokhov, A. I. Klenov, and A. A. Pil’shchikov, “Structure and mechanical properties of austenitic stainless steel prepared by selective laser melting,” Phys. Met. Metallogr. 122, No. 5, 491–497 (2021).CrossRef V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, D. N. Abdullina, E. A. Petukhov, E. B. Smirnov, E. V. Shorokhov, A. I. Klenov, and A. A. Pil’shchikov, “Structure and mechanical properties of austenitic stainless steel prepared by selective laser melting,” Phys. Met. Metallogr. 122, No. 5, 491–497 (2021).CrossRef
Metadaten
Titel
Structure and Mechanical Properties of Al–Cu–Mg–Si Alloy Prepared by Selective Laser Melting
verfasst von
I. G. Brodova
A. N. Klenov
I. G. Shirinkina
E. B. Smirnov
N. Yu. Orlova
Publikationsdatum
01.12.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 12/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21120036

Weitere Artikel der Ausgabe 12/2021

Physics of Metals and Metallography 12/2021 Zur Ausgabe