Skip to main content
Erschienen in: Physics of Metals and Metallography 5/2022

01.05.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Properties of Al–4.5Mg–0.15Zr Compositions Alloyed with Er, Y, and Yb

verfasst von: A. G. Mochugovskiy, R. Yu. Barkov, A. V. Mikhaylovskaya, I. S. Loginova, O. A. Yakovtseva, A. V. Pozdniakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure and properties of the Al–4.5Mg–0.15Zr compositions additionally alloyed with Er, Y, and Yb are studied. During low-temperature annealing of the alloys, the precipitates of 3–5 nm in size with the L12 structure are formed. The recrystallization of cold-rolled sheets of the studied alloys starts at a temperature of ~300°С, when the hardness substantially decreases as compared to that of the rolled alloys, and the structure is almost completely recrystallized. During heating to 550°С, the stable recrystallized structure with a grain size of 11–13 µm remains in the alloys with Er and Yb, whereas, in the alloy with Y, the coarse-grained structure with an average grain size of 40 ± 7 µm is formed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Ryum, “Precipitation and recrystallization in an Al–0.5 wt % Zr-alloy,” Acta Metall. 17, 269–278 (1969).CrossRef N. Ryum, “Precipitation and recrystallization in an Al–0.5 wt % Zr-alloy,” Acta Metall. 17, 269–278 (1969).CrossRef
2.
Zurück zum Zitat O. Izumi and D. Oelschlägel, “Structural investigation of precipitation in an aluminum alloy containing 1.1 weight percent zirconium,” Z. Met. 60, 845–851 (1969). O. Izumi and D. Oelschlägel, “Structural investigation of precipitation in an aluminum alloy containing 1.1 weight percent zirconium,” Z. Met. 60, 845–851 (1969).
3.
Zurück zum Zitat E. Nes and H. Billdal, “The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al–Zr solid solution,” Acta Metall. 25, 1039–1046 (1977).CrossRef E. Nes and H. Billdal, “The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al–Zr solid solution,” Acta Metall. 25, 1039–1046 (1977).CrossRef
4.
Zurück zum Zitat V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (2007), ISBN 9780080453705.CrossRef V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (2007), ISBN 9780080453705.CrossRef
5.
Zurück zum Zitat C. Fuller, J. Murray, and D. Seidman, “Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al(ScZr) precipitates,” Acta Mater. 53, 5401–5413 (2005).CrossRef C. Fuller, J. Murray, and D. Seidman, “Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al(ScZr) precipitates,” Acta Mater. 53, 5401–5413 (2005).CrossRef
6.
Zurück zum Zitat A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Y. Tabachkova, W. Mufalo, and V. K. Portnoy, “Precipitation behavior of L12 Al3Zr phase in Al–Mg–Zr alloy,” Mater. Charact. 139, 30–37 (2018).CrossRef A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Y. Tabachkova, W. Mufalo, and V. K. Portnoy, “Precipitation behavior of L12 Al3Zr phase in Al–Mg–Zr alloy,” Mater. Charact. 139, 30–37 (2018).CrossRef
7.
Zurück zum Zitat Y. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S. V. Divinski, and G. Wilde, “Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation,” Acta Mater. 124, 210–224 (2017).CrossRef Y. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S. V. Divinski, and G. Wilde, “Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation,” Acta Mater. 124, 210–224 (2017).CrossRef
8.
Zurück zum Zitat Y. Sun, Y. Luo, Q. Pan, B. Liu, L. Long, W. Wang, J. Ye, Z. Huang, and S. Xiang, “Effect of Sc content on microstructure and properties of Al–Zn–Mg–Cu–Zr alloy,” Mater. Today Commun. 26, 101899 (2021).CrossRef Y. Sun, Y. Luo, Q. Pan, B. Liu, L. Long, W. Wang, J. Ye, Z. Huang, and S. Xiang, “Effect of Sc content on microstructure and properties of Al–Zn–Mg–Cu–Zr alloy,” Mater. Today Commun. 26, 101899 (2021).CrossRef
9.
Zurück zum Zitat A. G. Mochugovskiy, A. V. Mikhaylovskaya, N. Y. Taba-chkova, and V. K. Portnoy, “The mechanism of L12 phase precipitation, microstructure and tensile properties of Al–Mg–Er–Zr alloy,” Mater. Sci. Eng., A 744, 195–205 (2019).CrossRef A. G. Mochugovskiy, A. V. Mikhaylovskaya, N. Y. Taba-chkova, and V. K. Portnoy, “The mechanism of L12 phase precipitation, microstructure and tensile properties of Al–Mg–Er–Zr alloy,” Mater. Sci. Eng., A 744, 195–205 (2019).CrossRef
10.
Zurück zum Zitat G. M. Novotny and A. J. Ardell, “Precipitation of Al3Sc in binary Al–Sc alloys,” Mater. Sci. Eng., A 318, 144–154 (2001).CrossRef G. M. Novotny and A. J. Ardell, “Precipitation of Al3Sc in binary Al–Sc alloys,” Mater. Sci. Eng., A 318, 144–154 (2001).CrossRef
11.
Zurück zum Zitat E. Clouet, “Excess solvent in precipitates,” Nat. Mater. 17, 1060–1061 (2018).CrossRef E. Clouet, “Excess solvent in precipitates,” Nat. Mater. 17, 1060–1061 (2018).CrossRef
12.
Zurück zum Zitat A. Tolley, V. Radmilovic, and U. Dahmen, “Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys,” Scr. Mater. 52, 621–625 (2005).CrossRef A. Tolley, V. Radmilovic, and U. Dahmen, “Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys,” Scr. Mater. 52, 621–625 (2005).CrossRef
13.
Zurück zum Zitat K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Criteria for developing castable, creep-resistant aluminum-based alloys—A review,” Z. Metallkunde 97, 246–265 (2006).CrossRef K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Criteria for developing castable, creep-resistant aluminum-based alloys—A review,” Z. Metallkunde 97, 246–265 (2006).CrossRef
14.
Zurück zum Zitat C. B. Fuller, D. N. Seidman, and D. C. Dunand, “Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures,” Acta Mater. 51, 4803–4814 (2003).CrossRef C. B. Fuller, D. N. Seidman, and D. C. Dunand, “Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures,” Acta Mater. 51, 4803–4814 (2003).CrossRef
15.
Zurück zum Zitat B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen, “Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys,” Scr. Mater. 51, 333–337 (2004).CrossRef B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen, “Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys,” Scr. Mater. 51, 333–337 (2004).CrossRef
16.
Zurück zum Zitat N. A. Belov, A. N. Alabin, D. G. Eskin, and V. V. Istomin-Kastrovskii, “Optimization of hardening of Al–Zr–Sc cast alloys,” J. Mater. Sci. 41, 5890–5899 (2006).CrossRef N. A. Belov, A. N. Alabin, D. G. Eskin, and V. V. Istomin-Kastrovskii, “Optimization of hardening of Al–Zr–Sc cast alloys,” J. Mater. Sci. 41, 5890–5899 (2006).CrossRef
17.
Zurück zum Zitat N. A. Belov and A. N. Alabin, “Promising aluminum alloys with zirconium and scandium additions,” Non-Ferrous Met. 2, 99 (2007). N. A. Belov and A. N. Alabin, “Promising aluminum alloys with zirconium and scandium additions,” Non-Ferrous Met. 2, 99 (2007).
18.
Zurück zum Zitat K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal aging,” Acta Mater. 58, 5184–5195 (2010).CrossRef K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal aging,” Acta Mater. 58, 5184–5195 (2010).CrossRef
19.
Zurück zum Zitat L. L. Rokhlin, N. R. Bochvar, and N. P. Leonova, “Study of decomposition of oversaturated solid solution in Al–Sc–Zr alloys at different ratio of scandium and zirconium,” Inorg. Mater. 2, 517–520 (2011).CrossRef L. L. Rokhlin, N. R. Bochvar, and N. P. Leonova, “Study of decomposition of oversaturated solid solution in Al–Sc–Zr alloys at different ratio of scandium and zirconium,” Inorg. Mater. 2, 517–520 (2011).CrossRef
20.
Zurück zum Zitat K. Deane, S. L. Kampe, D. Swenson, and P. G. Sanders, “Precipitate evolution and strengthening in supersaturated rapidly solidified Al–Sc–Zr alloys,” Metall. Mater. Trans. A 48, 2030–2039 (2017).CrossRef K. Deane, S. L. Kampe, D. Swenson, and P. G. Sanders, “Precipitate evolution and strengthening in supersaturated rapidly solidified Al–Sc–Zr alloys,” Metall. Mater. Trans. A 48, 2030–2039 (2017).CrossRef
21.
Zurück zum Zitat S. M. Amer, Yu. R. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef S. M. Amer, Yu. R. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef
22.
Zurück zum Zitat H. Li, Z. Gao, H. Yin, H. Jiang, X. Su, and J. Bin, “Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum,” Scr. Mater. 68, 59–62 (2013).CrossRef H. Li, Z. Gao, H. Yin, H. Jiang, X. Su, and J. Bin, “Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum,” Scr. Mater. 68, 59–62 (2013).CrossRef
23.
Zurück zum Zitat A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef
24.
Zurück zum Zitat S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef
25.
Zurück zum Zitat Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef
26.
Zurück zum Zitat R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef
27.
Zurück zum Zitat Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef
28.
Zurück zum Zitat A. V. Pozdniakov, R. Y. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef A. V. Pozdniakov, R. Y. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef
29.
Zurück zum Zitat A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low Additions of Y, Sm, Gd, Hf and Er on the Structure and Hardness of Alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).CrossRef A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low Additions of Y, Sm, Gd, Hf and Er on the Structure and Hardness of Alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).CrossRef
30.
Zurück zum Zitat R. Y. Barkov, A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Loginova, A. S. Prosviryakov, and A. V. Pozdniakov, “Effects of thermomechanical treatment on the microstructure, precipitation strengthening, internal friction, and thermal stability of Al–Er–Yb–Sc alloys with good electrical conductivity,” J. Alloys Compd. 855, 157367 (2021).CrossRef R. Y. Barkov, A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Loginova, A. S. Prosviryakov, and A. V. Pozdniakov, “Effects of thermomechanical treatment on the microstructure, precipitation strengthening, internal friction, and thermal stability of Al–Er–Yb–Sc alloys with good electrical conductivity,” J. Alloys Compd. 855, 157367 (2021).CrossRef
31.
Zurück zum Zitat R. Yu. Barkov, O. A. Yakovtseva, O. I. Mamzurina, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. V. Mikhailovskaya, and A. V. Pozdniakov, “Effect of Yb on the structure and properties of an electroconductive Al–Y–Sc alloy,” Fiz. Met. Metalloved. 121, 604–609 (2020). R. Yu. Barkov, O. A. Yakovtseva, O. I. Mamzurina, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. V. Mikhailovskaya, and A. V. Pozdniakov, “Effect of Yb on the structure and properties of an electroconductive Al–Y–Sc alloy,” Fiz. Met. Metalloved. 121, 604–609 (2020).
32.
Zurück zum Zitat M. E. van Dalen, T. Gyger, D. C. Dunand, and D. N. Seidman, “Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys,” Acta Mater. 59, 7615–7626 (2011).CrossRef M. E. van Dalen, T. Gyger, D. C. Dunand, and D. N. Seidman, “Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys,” Acta Mater. 59, 7615–7626 (2011).CrossRef
33.
Zurück zum Zitat N. Q. Vo, D. Bayansan, A. Sanaty-Zadeh, E. H. Ramos, and D. C. Dunand, “Effect of Yb microadditions on creep resistance of a dilute Al–Er–Sc–Zr alloy,” Mater. 4, 65–69 (2018). N. Q. Vo, D. Bayansan, A. Sanaty-Zadeh, E. H. Ramos, and D. C. Dunand, “Effect of Yb microadditions on creep resistance of a dilute Al–Er–Sc–Zr alloy,” Mater. 4, 65–69 (2018).
34.
Zurück zum Zitat G. Peng, K. Chen, H. Fang, and S. Chen, “A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy,” Mater. Sci. Eng., A 535, 311–315 (2012).CrossRef G. Peng, K. Chen, H. Fang, and S. Chen, “A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy,” Mater. Sci. Eng., A 535, 311–315 (2012).CrossRef
35.
Zurück zum Zitat S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Role of Yb and Si on the precipitation hardening and recrystallization of dilute Al–Zr alloys,” J. Alloys Compd. 599, 65–70 (2014).CrossRef S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Role of Yb and Si on the precipitation hardening and recrystallization of dilute Al–Zr alloys,” J. Alloys Compd. 599, 65–70 (2014).CrossRef
36.
Zurück zum Zitat A. V. Pozdniakov, V. Yarasu, R. Y. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, P. 116–119 (2017). A. V. Pozdniakov, V. Yarasu, R. Y. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, P. 116–119 (2017).
37.
Zurück zum Zitat L. Z. He, X. H. Li, X. T. Liu, X. J. Wang, H. T. Zhang, and J. Z. Cui, “Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy,” Mater. Sci. Eng., A 527, 7510–7518 (2010).CrossRef L. Z. He, X. H. Li, X. T. Liu, X. J. Wang, H. T. Zhang, and J. Z. Cui, “Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy,” Mater. Sci. Eng., A 527, 7510–7518 (2010).CrossRef
38.
Zurück zum Zitat X. Zhang, F. Mei, H. Zhang, S. Wang, C. Fang, and H. Hao, “Effects of Gd and Y additions on microstructure and properties of Al–Zn–Mg–Cu–Zr alloys,” Mater. Sci. Eng., A 552, 230–235 (2012).CrossRef X. Zhang, F. Mei, H. Zhang, S. Wang, C. Fang, and H. Hao, “Effects of Gd and Y additions on microstructure and properties of Al–Zn–Mg–Cu–Zr alloys,” Mater. Sci. Eng., A 552, 230–235 (2012).CrossRef
39.
Zurück zum Zitat R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef
40.
Zurück zum Zitat K. Knipling, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C,” Acta Mater. 56, 1182–1195 (2008).CrossRef K. Knipling, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C,” Acta Mater. 56, 1182–1195 (2008).CrossRef
41.
Zurück zum Zitat M. F. Ashby and L. M. Brown, “Diffraction contrast from spherically symmetrical coherency strains,” Philos. Mag. A. J. Theor. Exp. Appl. Phys. 8, No. 91, 1083–1103 (1963). M. F. Ashby and L. M. Brown, “Diffraction contrast from spherically symmetrical coherency strains,” Philos. Mag. A. J. Theor. Exp. Appl. Phys. 8, No. 91, 1083–1103 (1963).
42.
Zurück zum Zitat I. S. Golovin, A. V. Mikhaylovskaya, and H.-R. Sinning, “Role of the β-phase in grain boundary and dislocation anelasticity in binary Al–Mg alloys,” J. Alloys Compd. 577, 622–632 (2013).CrossRef I. S. Golovin, A. V. Mikhaylovskaya, and H.-R. Sinning, “Role of the β-phase in grain boundary and dislocation anelasticity in binary Al–Mg alloys,” J. Alloys Compd. 577, 622–632 (2013).CrossRef
43.
Zurück zum Zitat A. G. Mochugovskiy and A. V. Mikhaylovskaya, “Comparison of precipitation kinetics and mechanical properties in Zr and Sc-bearing aluminum-based alloys,” Mater. Lett. 275 (2020). A. G. Mochugovskiy and A. V. Mikhaylovskaya, “Comparison of precipitation kinetics and mechanical properties in Zr and Sc-bearing aluminum-based alloys,” Mater. Lett. 275 (2020).
44.
Zurück zum Zitat A. G. Mochugovskiy, A. V. Mikhaylovskaya, M. Y. Zadorognyy, and I. S. Golovin, “Effect of heat treatment on the grain size control, superplasticity, internal friction, and mechanical properties of zirconium-bearing aluminum-based alloy,” J. Alloys Compd. 856, 157455 (2021).CrossRef A. G. Mochugovskiy, A. V. Mikhaylovskaya, M. Y. Zadorognyy, and I. S. Golovin, “Effect of heat treatment on the grain size control, superplasticity, internal friction, and mechanical properties of zirconium-bearing aluminum-based alloy,” J. Alloys Compd. 856, 157455 (2021).CrossRef
45.
Zurück zum Zitat H. Tanaka, Y. Nagai, Y. Oguri, and H. Yoshida, “Mechanical properties of 5083 aluminum alloy sheets produced by isothermal rolling,” Mater. Trans. 48, 2008–2013 (2007).CrossRef H. Tanaka, Y. Nagai, Y. Oguri, and H. Yoshida, “Mechanical properties of 5083 aluminum alloy sheets produced by isothermal rolling,” Mater. Trans. 48, 2008–2013 (2007).CrossRef
46.
Zurück zum Zitat W. Lefebvre, N. Masquelier, J. Houard, R. Patte, and H. Zapolsky, “Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions,” Scr. Mater. 70, 43–46 (2014).CrossRef W. Lefebvre, N. Masquelier, J. Houard, R. Patte, and H. Zapolsky, “Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions,” Scr. Mater. 70, 43–46 (2014).CrossRef
Metadaten
Titel
Structure and Properties of Al–4.5Mg–0.15Zr Compositions Alloyed with Er, Y, and Yb
verfasst von
A. G. Mochugovskiy
R. Yu. Barkov
A. V. Mikhaylovskaya
I. S. Loginova
O. A. Yakovtseva
A. V. Pozdniakov
Publikationsdatum
01.05.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 5/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22050088

Weitere Artikel der Ausgabe 5/2022

Physics of Metals and Metallography 5/2022 Zur Ausgabe