Skip to main content
Erschienen in:

01.06.2024 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Surface Properties of Stable Austenitic Steel Subjected to Liquid Carburizing at Lowered Temperature

verfasst von: R. A. Savrai, P. A. Skorynina, Yu. M. Kolobylin

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper studies the structure, chemical and phase composition, microhardness, and surface roughness of heat-resistant chromium–nickel (in wt %: 24.27 Cr and 18.81 Ni) austenitic steel subjected to liquid carburizing at a temperature of 780°С. It is established that the microstructure of the carburized layer predominately consists of carbon-rich austenite (γ-phase), chromium carbide Cr7C3, and cementite Fe3C. It is revealed that carbides precipitate both at boundaries and inside the austenite grains; as we move away from the steel surface, the amount and dispersity of intragranular carbides decreases. It is also established that liquid carburizing leads to an increase in the microhardness of steel surface from 200 to 590 HV0.0025. The total depth of hardening is approximately 200 μm, and the hardened layer is gradient-wise. The surface of the carburized steel is characterized by large surface roughness (Ra = 2.40 μm and Rz = 17.60 μm), compared to the electropolished surface of specimens before carburizing (Ra = 0.17 μm and Rz = 1.80 μm), which is caused by several factors, including, e.g., oxidation of the surface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Materials Science: Textbook for Higher Technical Institutions, Ed. by B. N. Arzamasov (Mashinostroenie, Moscow, 1986) [in Russian]. Materials Science: Textbook for Higher Technical Institutions, Ed. by B. N. Arzamasov (Mashinostroenie, Moscow, 1986) [in Russian].
21.
Zurück zum Zitat A. M. Dobrotvorskii, E. L. Gyulikhandanov, and E. I. Maslikova, “The degradation of the structure of heat-resistant steel tubes after long-term use in the petrochemical industry,” Nauchn.-Tekh. Vedomosti S.‑Peterb. Gos. Tekh. Univ., No. 1, 136–144 (2016). https://doi.org/10.5862/JEST.238.14 A. M. Dobrotvorskii, E. L. Gyulikhandanov, and E. I. Maslikova, “The degradation of the structure of heat-resistant steel tubes after long-term use in the petrochemical industry,” Nauchn.-Tekh. Vedomosti S.‑Peterb. Gos. Tekh. Univ., No. 1, 136–144 (2016). https://​doi.​org/​10.​5862/​JEST.​238.​14
22.
Zurück zum Zitat V. P. Kuznetsov, A. V. Makarov, A. L. Osintseva, A. S. Yurovskikh, R. A. Savrai, S. A. Rogovaya, and A. E. Kiryakov, “The increase of strength and surface quality of austenitic stainless steel parts by diamond burnishing on the turning/milling center,” Uprochnyayushchie Tekhnol. Pokrytiya, No. 11, 16–26 (2011). V. P. Kuznetsov, A. V. Makarov, A. L. Osintseva, A. S. Yurovskikh, R. A. Savrai, S. A. Rogovaya, and A. E. Kiryakov, “The increase of strength and surface quality of austenitic stainless steel parts by diamond burnishing on the turning/milling center,” Uprochnyayushchie Tekhnol. Pokrytiya, No. 11, 16–26 (2011).
23.
Zurück zum Zitat A. V. Makarov, P. A. Skorynina, A. L. Osintseva, A. S. Yurovskikh, and R. A. Savrai, “Improvement of tribological properties of austenitic steel 12Kh18N10T by nanostructuring friction treatment,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 4, 80–92 (2015). https://doi.org/10.17212/1994-6309-2015-4-80-92 A. V. Makarov, P. A. Skorynina, A. L. Osintseva, A. S. Yurovskikh, and R. A. Savrai, “Improvement of tribological properties of austenitic steel 12Kh18N10T by nanostructuring friction treatment,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 4, 80–92 (2015). https://​doi.​org/​10.​17212/​1994-6309-2015-4-80-92
26.
Zurück zum Zitat A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr. 118, 1225–1235 (2017). https://doi.org/10.1134/S0031918X17120092CrossRef A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr. 118, 1225–1235 (2017). https://​doi.​org/​10.​1134/​S0031918X1712009​2CrossRef
31.
Zurück zum Zitat A. V. Makarov, N. V. Gavrilov, G. V. Samoylova, A. S. Mamaev, A. L. Osintseva, T. E. Kurennykh, and R. A. Savrai, “The effect of continuous and gas-cyclic plasma nitriding on the quality of nanostructured surface of austenitic steel,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 2, 55–66 (2017). https://doi.org/10.17212/1994-6309-2017-2-55-66 A. V. Makarov, N. V. Gavrilov, G. V. Samoylova, A. S. Mamaev, A. L. Osintseva, T. E. Kurennykh, and R. A. Savrai, “The effect of continuous and gas-cyclic plasma nitriding on the quality of nanostructured surface of austenitic steel,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 2, 55–66 (2017). https://​doi.​org/​10.​17212/​1994-6309-2017-2-55-66
32.
Zurück zum Zitat R. A. Savrai, P. A. Skorynina, A. V. Makarov, A. I. Men’shakov, and V. S. Gaviko, “The influence of frictional treatment and low-temperature plasma carburizing on the structure and phase composition of metastable austenitic steel,” Phys. Met. Metallogr. 124, 496–503 (2023). https://doi.org/10.1134/S0031918X23600483CrossRef R. A. Savrai, P. A. Skorynina, A. V. Makarov, A. I. Men’shakov, and V. S. Gaviko, “The influence of frictional treatment and low-temperature plasma carburizing on the structure and phase composition of metastable austenitic steel,” Phys. Met. Metallogr. 124, 496–503 (2023). https://​doi.​org/​10.​1134/​S0031918X2360048​3CrossRef
33.
Zurück zum Zitat R. A. Savrai, P. A. Skorynina, A. V. Makarov, L. Kh. Kogan, and A. I. Men’shakov, “The influence of frictional treatment and low-temperature plasma carburizing on the microhardness and electromagnetic properties of metastable austenitic steel,” Phys. Met. Metallogr. 124, 816–823 (2023). https://doi.org/10.1134/S0031918X23601166CrossRef R. A. Savrai, P. A. Skorynina, A. V. Makarov, L. Kh. Kogan, and A. I. Men’shakov, “The influence of frictional treatment and low-temperature plasma carburizing on the microhardness and electromagnetic properties of metastable austenitic steel,” Phys. Met. Metallogr. 124, 816–823 (2023). https://​doi.​org/​10.​1134/​S0031918X2360116​6CrossRef
38.
39.
Zurück zum Zitat H. Toraya, “A new method for quantitative phase analysis: Direct derivation of weight fractions from observed intensities and chemical composition data of individual crystalline phases,” Rigaku J. 34 (1), 3–8 (2018). H. Toraya, “A new method for quantitative phase analysis: Direct derivation of weight fractions from observed intensities and chemical composition data of individual crystalline phases,” Rigaku J. 34 (1), 3–8 (2018).
43.
Zurück zum Zitat B. Matesa, I. Samardzic, and M. Duntier, “The influence of the heat treatment on delta ferrite transformation in austenitic stainless steel welds,” Metalurgija 51, 229–232 (2012). B. Matesa, I. Samardzic, and M. Duntier, “The influence of the heat treatment on delta ferrite transformation in austenitic stainless steel welds,” Metalurgija 51, 229–232 (2012).
45.
Zurück zum Zitat G. Maistro, L. Nyborg, S. Vezzu, and Y. Cao, “Microstructural characterization and layer stability of low-temperature carburized AISI 304L and AISI 904L austenitic stainless steel,” Metall. Ital., Nos. 11–12, 21–30 (2015). G. Maistro, L. Nyborg, S. Vezzu, and Y. Cao, “Microstructural characterization and layer stability of low-temperature carburized AISI 304L and AISI 904L austenitic stainless steel,” Metall. Ital., Nos. 11–12, 21–30 (2015).
Metadaten
Titel
Structure and Surface Properties of Stable Austenitic Steel Subjected to Liquid Carburizing at Lowered Temperature
verfasst von
R. A. Savrai
P. A. Skorynina
Yu. M. Kolobylin
Publikationsdatum
01.06.2024
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2024
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X24600350