Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Structure-Controlled Synthesis

verfasst von : Anqi Zhang, Gengfeng Zheng, Charles M. Lieber

Erschienen in: Nanowires

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. The ability to control and modulate the composition, doping, crystal structure and morphology of semiconductor NWs allows researchers to explore applications of NWs for investigating fundamental scientific questions through developing new technologies. The chapter expands significantly upon the basic methods introduced in the previous chapter for NW synthesis by focusing on controlled growth of a host of NWs with modulated morphologies and structures, including axial and radial heterostructures, kinked, branched, and/or modulated doped structures, where the increased complexity in the NWs can enable unique functional properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)CrossRef C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)CrossRef
2.
Zurück zum Zitat M.S. Gudiksen, C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 122(36), 8801–8802 (2000)CrossRef M.S. Gudiksen, C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 122(36), 8801–8802 (2000)CrossRef
3.
Zurück zum Zitat M.S. Gudiksen, J. Wang, C.M. Lieber, Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105(19), 4062–4064 (2001)CrossRef M.S. Gudiksen, J. Wang, C.M. Lieber, Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105(19), 4062–4064 (2001)CrossRef
4.
Zurück zum Zitat Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214–2216 (2001)ADSCrossRef Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214–2216 (2001)ADSCrossRef
5.
Zurück zum Zitat Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4(3), 433–436 (2004)ADSCrossRef Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4(3), 433–436 (2004)ADSCrossRef
6.
Zurück zum Zitat W. Shi, H. Peng, Y. Zheng, N. Wang, N. Shang, Z. Pan, C. Lee, S. Lee, Synthesis of large areas of highly oriented, very long silicon nanowires. Adv. Mater. 12(18), 1343–1345 (2000)CrossRef W. Shi, H. Peng, Y. Zheng, N. Wang, N. Shang, Z. Pan, C. Lee, S. Lee, Synthesis of large areas of highly oriented, very long silicon nanowires. Adv. Mater. 12(18), 1343–1345 (2000)CrossRef
7.
Zurück zum Zitat Y. Shi, Q. Hu, H. Araki, H. Suzuki, H. Gao, W. Yang, T. Noda, Long Si nanowires with millimeter-scale length by modified thermal evaporation from Si powder. Appl. Phys. A 80(8), 1733–1736 (2005)ADSCrossRef Y. Shi, Q. Hu, H. Araki, H. Suzuki, H. Gao, W. Yang, T. Noda, Long Si nanowires with millimeter-scale length by modified thermal evaporation from Si powder. Appl. Phys. A 80(8), 1733–1736 (2005)ADSCrossRef
8.
Zurück zum Zitat W.I. Park, G. Zheng, X. Jiang, B. Tian, C.M. Lieber, Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 8(9), 3004–3009 (2008)ADSCrossRef W.I. Park, G. Zheng, X. Jiang, B. Tian, C.M. Lieber, Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 8(9), 3004–3009 (2008)ADSCrossRef
9.
Zurück zum Zitat F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)CrossRef F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)CrossRef
10.
Zurück zum Zitat G. Zheng, W. Lu, S. Jin, C.M. Lieber, Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 16(21), 1890–1893 (2004)CrossRef G. Zheng, W. Lu, S. Jin, C.M. Lieber, Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 16(21), 1890–1893 (2004)CrossRef
11.
Zurück zum Zitat J. Kikkawa, Y. Ohno, S. Takeda, Growth rate of silicon nanowires. Appl. Phys. Lett. 86(12), 123109 (2005)ADSCrossRef J. Kikkawa, Y. Ohno, S. Takeda, Growth rate of silicon nanowires. Appl. Phys. Lett. 86(12), 123109 (2005)ADSCrossRef
12.
Zurück zum Zitat M. Masi, C. Cavallotti; S. Carrà, Gas phase and surface kinetics of silicon chemical vapor deposition from silane and chlorosilanes, in Silicon-Based Materials and Devices, ed. by M. Tomozawa, H. Nalwa (Academic Press, San Diego, 2001) M. Masi, C. Cavallotti; S. Carrà, Gas phase and surface kinetics of silicon chemical vapor deposition from silane and chlorosilanes, in Silicon-Based Materials and Devices, ed. by M. Tomozawa, H. Nalwa (Academic Press, San Diego, 2001)
13.
Zurück zum Zitat Y. Cui, X. Duan, J. Hu, C.M. Lieber, Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104(22), 5213–5216 (2000)CrossRef Y. Cui, X. Duan, J. Hu, C.M. Lieber, Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104(22), 5213–5216 (2000)CrossRef
14.
Zurück zum Zitat L. Lauhon, M.S. Gudiksen, C.M. Lieber, Semiconductor nanowire heterostructures. Phil. Trans. R. Soc. Lond. A 2004(362), 1247–1260 (1819) L. Lauhon, M.S. Gudiksen, C.M. Lieber, Semiconductor nanowire heterostructures. Phil. Trans. R. Soc. Lond. A 2004(362), 1247–1260 (1819)
15.
Zurück zum Zitat R. Agarwal, Heterointerfaces in semiconductor nanowires. Small 4(11), 1872–1893 (2008)CrossRef R. Agarwal, Heterointerfaces in semiconductor nanowires. Small 4(11), 1872–1893 (2008)CrossRef
16.
Zurück zum Zitat R.S. Wagner, Growth of whiskers by vapor-phase reactions, in Whisker technology, ed. by A.P. Levitt (Wiley, New York, 1970), pp. 15–119 R.S. Wagner, Growth of whiskers by vapor-phase reactions, in Whisker technology, ed. by A.P. Levitt (Wiley, New York, 1970), pp. 15–119
17.
Zurück zum Zitat K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa, GaAs p-n junction formed in quantum wire crystals. Appl. Phys. Lett. 60(6), 745–747 (1992)ADSCrossRef K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa, GaAs p-n junction formed in quantum wire crystals. Appl. Phys. Lett. 60(6), 745–747 (1992)ADSCrossRef
18.
Zurück zum Zitat J. Hu, M. Ouyang, P. Yang, C.M. Lieber, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399(6731), 48–51 (1999)ADSCrossRef J. Hu, M. Ouyang, P. Yang, C.M. Lieber, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399(6731), 48–51 (1999)ADSCrossRef
20.
Zurück zum Zitat Y. Wu, R. Fan, P. Yang, Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2(2), 83–86 (2002)ADSCrossRef Y. Wu, R. Fan, P. Yang, Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2(2), 83–86 (2002)ADSCrossRef
21.
Zurück zum Zitat M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, One-dimensional steeplechase for electrons realized. Nano Lett. 2(2), 87–89 (2002)ADSCrossRef M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, One-dimensional steeplechase for electrons realized. Nano Lett. 2(2), 87–89 (2002)ADSCrossRef
22.
Zurück zum Zitat M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80(6), 1058–1060 (2002)ADSCrossRef M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80(6), 1058–1060 (2002)ADSCrossRef
23.
Zurück zum Zitat M.T. Björk, C. Thelander, A.E. Hansen, L.E. Jensen, M.W. Larsson, L.R. Wallenberg, L. Samuelson, Few-electron quantum dots in nanowires. Nano Lett. 4(9), 1621–1625 (2004)ADSCrossRef M.T. Björk, C. Thelander, A.E. Hansen, L.E. Jensen, M.W. Larsson, L.R. Wallenberg, L. Samuelson, Few-electron quantum dots in nanowires. Nano Lett. 4(9), 1621–1625 (2004)ADSCrossRef
24.
Zurück zum Zitat M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)ADSCrossRef M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)ADSCrossRef
25.
Zurück zum Zitat D.J. Pena, J.K. Mbindyo, A.J. Carado, T.E. Mallouk, C.D. Keating, B. Razavi, T.S. Mayer, Template growth of photoconductive metal-CdSe-metal nanowires. J. Phys. Chem. B 106(30), 7458–7462 (2002)CrossRef D.J. Pena, J.K. Mbindyo, A.J. Carado, T.E. Mallouk, C.D. Keating, B. Razavi, T.S. Mayer, Template growth of photoconductive metal-CdSe-metal nanowires. J. Phys. Chem. B 106(30), 7458–7462 (2002)CrossRef
26.
Zurück zum Zitat Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430(6995), 61–65 (2004)ADSCrossRef Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430(6995), 61–65 (2004)ADSCrossRef
27.
Zurück zum Zitat Y.-C. Lin, K.-C. Lu, W.-W. Wu, J. Bai, L.J. Chen, K. Tu, Y. Huang, Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett. 8(3), 913–918 (2008)ADSCrossRef Y.-C. Lin, K.-C. Lu, W.-W. Wu, J. Bai, L.J. Chen, K. Tu, Y. Huang, Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett. 8(3), 913–918 (2008)ADSCrossRef
28.
Zurück zum Zitat C. Yang, Z. Zhong, C.M. Lieber, Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310(5752), 1304–1307 (2005)ADSCrossRef C. Yang, Z. Zhong, C.M. Lieber, Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310(5752), 1304–1307 (2005)ADSCrossRef
29.
Zurück zum Zitat T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456–3460 (2008)ADSCrossRef T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456–3460 (2008)ADSCrossRef
30.
Zurück zum Zitat T. Cohen-Karni, D. Casanova, J.F. Cahoon, Q. Qing, D.C. Bell, C.M. Lieber, Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12(5), 2639–2644 (2012)ADSCrossRef T. Cohen-Karni, D. Casanova, J.F. Cahoon, Q. Qing, D.C. Bell, C.M. Lieber, Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12(5), 2639–2644 (2012)ADSCrossRef
31.
Zurück zum Zitat J.D. Christesen, C.W. Pinion, E.M. Grumstrup, J.M. Papanikolas, J.F. Cahoon, Synthetically encoding 10 nm morphology in silicon nanowires. Nano Lett. 13(12), 6281–6286 (2013)ADSCrossRef J.D. Christesen, C.W. Pinion, E.M. Grumstrup, J.M. Papanikolas, J.F. Cahoon, Synthetically encoding 10 nm morphology in silicon nanowires. Nano Lett. 13(12), 6281–6286 (2013)ADSCrossRef
32.
Zurück zum Zitat L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002)ADSCrossRef L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002)ADSCrossRef
33.
Zurück zum Zitat F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005)ADSCrossRef F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005)ADSCrossRef
34.
Zurück zum Zitat F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7(9), 701–706 (2008)ADSCrossRef F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7(9), 701–706 (2008)ADSCrossRef
35.
Zurück zum Zitat T.J. Kempa, S.-K. Kim, R.W. Day, H.-G. Park, D.G. Nocera, C.M. Lieber, Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices. J. Am. Chem. Soc. 135(49), 18354–18357 (2013)CrossRef T.J. Kempa, S.-K. Kim, R.W. Day, H.-G. Park, D.G. Nocera, C.M. Lieber, Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices. J. Am. Chem. Soc. 135(49), 18354–18357 (2013)CrossRef
36.
Zurück zum Zitat M.N. Mankin, R.W. Day, R. Gao, Y.-S. No, S.-K. Kim, A.A. McClelland, D.C. Bell, H.-G. Park, C.M. Lieber, Facet-selective epitaxy of compound semiconductors on faceted silicon nanowires. Nano Lett. 15(7), 4776–4782 (2015)ADSCrossRef M.N. Mankin, R.W. Day, R. Gao, Y.-S. No, S.-K. Kim, A.A. McClelland, D.C. Bell, H.-G. Park, C.M. Lieber, Facet-selective epitaxy of compound semiconductors on faceted silicon nanowires. Nano Lett. 15(7), 4776–4782 (2015)ADSCrossRef
37.
Zurück zum Zitat R.W. Day, M.N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D.C. Bell, H.-G. Park, C.M. Lieber, Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nanotechnol. 10(4), 345–352 (2015)ADSCrossRef R.W. Day, M.N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D.C. Bell, H.-G. Park, C.M. Lieber, Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nanotechnol. 10(4), 345–352 (2015)ADSCrossRef
38.
Zurück zum Zitat A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84(21), 4176–4178 (2004)ADSCrossRef A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84(21), 4176–4178 (2004)ADSCrossRef
39.
Zurück zum Zitat B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)ADSCrossRef B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)ADSCrossRef
40.
Zurück zum Zitat D.C. Dillen, K. Kim, E.-S. Liu, E. Tutuc, Radial modulation doping in core-shell nanowires. Nat. Nanotechnol. 9(2), 116–120 (2014)ADSCrossRef D.C. Dillen, K. Kim, E.-S. Liu, E. Tutuc, Radial modulation doping in core-shell nanowires. Nat. Nanotechnol. 9(2), 116–120 (2014)ADSCrossRef
41.
Zurück zum Zitat C. Cheng, H.J. Fan, Branched nanowires: synthesis and energy applications. Nano Today 7(4), 327–343 (2012)CrossRef C. Cheng, H.J. Fan, Branched nanowires: synthesis and energy applications. Nano Today 7(4), 327–343 (2012)CrossRef
42.
Zurück zum Zitat D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber, Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4(5), 871–874 (2004)ADSCrossRef D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber, Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4(5), 871–874 (2004)ADSCrossRef
43.
Zurück zum Zitat K.A. Dick, K. Deppert, M.W. Larsson, T. Mårtensson, W. Seifert, L.R. Wallenberg, L. Samuelson, Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3(6), 380–384 (2004)ADSCrossRef K.A. Dick, K. Deppert, M.W. Larsson, T. Mårtensson, W. Seifert, L.R. Wallenberg, L. Samuelson, Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3(6), 380–384 (2004)ADSCrossRef
44.
Zurück zum Zitat Q. Wan, J. Huang, Z. Xie, T. Wang, E.N. Dattoli, W. Lu, Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application. Appl. Phys. Lett. 92(10), 102101 (2008)ADSCrossRef Q. Wan, J. Huang, Z. Xie, T. Wang, E.N. Dattoli, W. Lu, Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application. Appl. Phys. Lett. 92(10), 102101 (2008)ADSCrossRef
45.
Zurück zum Zitat Q. Wan, E.N. Dattoli, W.Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, High-performance transparent conducting oxide nanowires. Nano Lett. 6(12), 2909–2915 (2006)ADSCrossRef Q. Wan, E.N. Dattoli, W.Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, High-performance transparent conducting oxide nanowires. Nano Lett. 6(12), 2909–2915 (2006)ADSCrossRef
46.
Zurück zum Zitat K.A. Dick, K. Deppert, L.S. Karlsson, M.W. Larsson, W. Seifert, L. Wallenberg, L. Samuelson, Directed growth of branched nanowire structures. MRS Bull. 32(02), 127–133 (2007)CrossRef K.A. Dick, K. Deppert, L.S. Karlsson, M.W. Larsson, W. Seifert, L. Wallenberg, L. Samuelson, Directed growth of branched nanowire structures. MRS Bull. 32(02), 127–133 (2007)CrossRef
47.
Zurück zum Zitat Y. Jung, D.-K. Ko, R. Agarwal, Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Lett. 7(2), 264–268 (2007)ADSCrossRef Y. Jung, D.-K. Ko, R. Agarwal, Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Lett. 7(2), 264–268 (2007)ADSCrossRef
48.
Zurück zum Zitat W. Zhou, A. Pan, Y. Li, G. Dai, Q. Wan, Q. Zhang, B. Zou, Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C 112(25), 9253–9260 (2008)CrossRef W. Zhou, A. Pan, Y. Li, G. Dai, Q. Wan, Q. Zhang, B. Zou, Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C 112(25), 9253–9260 (2008)CrossRef
49.
Zurück zum Zitat X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai, C.M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. USA 108(30), 12212–12216 (2011)ADSCrossRef X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai, C.M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. USA 108(30), 12212–12216 (2011)ADSCrossRef
50.
Zurück zum Zitat A. Dong, R. Tang, W.E. Buhro, Solution-based growth and structural characterization of homo-and heterobranched semiconductor nanowires. J. Am. Chem. Soc. 129(40), 12254–12262 (2007)CrossRef A. Dong, R. Tang, W.E. Buhro, Solution-based growth and structural characterization of homo-and heterobranched semiconductor nanowires. J. Am. Chem. Soc. 129(40), 12254–12262 (2007)CrossRef
51.
Zurück zum Zitat C. Cheng, B. Liu, H. Yang, W. Zhou, L. Sun, R. Chen, S.F. Yu, J. Zhang, H. Gong, H. Sun, Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: low-temperature hydrothermal preparation and optical properties. ACS Nano 3(10), 3069–3076 (2009)CrossRef C. Cheng, B. Liu, H. Yang, W. Zhou, L. Sun, R. Chen, S.F. Yu, J. Zhang, H. Gong, H. Sun, Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: low-temperature hydrothermal preparation and optical properties. ACS Nano 3(10), 3069–3076 (2009)CrossRef
52.
Zurück zum Zitat W. Zhou, C. Cheng, J. Liu, Y.Y. Tay, J. Jiang, X. Jia, J. Zhang, H. Gong, H.H. Hng, T. Yu, Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 21(13), 2439–2445 (2011)CrossRef W. Zhou, C. Cheng, J. Liu, Y.Y. Tay, J. Jiang, X. Jia, J. Zhang, H. Gong, H.H. Hng, T. Yu, Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 21(13), 2439–2445 (2011)CrossRef
53.
Zurück zum Zitat J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@ MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011)CrossRef J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@ MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011)CrossRef
54.
Zurück zum Zitat C. Cheng, B. Yan, S.M. Wong, X. Li, W. Zhou, T. Yu, Z. Shen, H. Yu, H.J. Fan, Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2(7), 1824–1828 (2010)CrossRef C. Cheng, B. Yan, S.M. Wong, X. Li, W. Zhou, T. Yu, Z. Shen, H. Yu, H.J. Fan, Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2(7), 1824–1828 (2010)CrossRef
55.
Zurück zum Zitat L. Manna, E.C. Scher, A.P. Alivisatos, Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122(51), 12700–12706 (2000)CrossRef L. Manna, E.C. Scher, A.P. Alivisatos, Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122(51), 12700–12706 (2000)CrossRef
56.
Zurück zum Zitat L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2(6), 382–385 (2003)ADSCrossRef L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2(6), 382–385 (2003)ADSCrossRef
57.
Zurück zum Zitat D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430(6996), 190–195 (2004)ADSCrossRef D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430(6996), 190–195 (2004)ADSCrossRef
58.
Zurück zum Zitat D. Wang, C.M. Lieber, Inorganic materials: nanocrystals branch out. Nat. Mater. 2(6), 355–356 (2003)ADSCrossRef D. Wang, C.M. Lieber, Inorganic materials: nanocrystals branch out. Nat. Mater. 2(6), 355–356 (2003)ADSCrossRef
59.
Zurück zum Zitat H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125(16), 4728–4729 (2003)CrossRef H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125(16), 4728–4729 (2003)CrossRef
60.
Zurück zum Zitat M. Fardy, A.I. Hochbaum, J. Goldberger, M.M. Zhang, P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 19(19), 3047–3051 (2007)CrossRef M. Fardy, A.I. Hochbaum, J. Goldberger, M.M. Zhang, P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 19(19), 3047–3051 (2007)CrossRef
61.
Zurück zum Zitat M.J. Bierman, Y.A. Lau, S. Jin, Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett. 7(9), 2907–2912 (2007)ADSCrossRef M.J. Bierman, Y.A. Lau, S. Jin, Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett. 7(9), 2907–2912 (2007)ADSCrossRef
62.
Zurück zum Zitat R. Liu, Z.-A. Li, C. Zhang, X. Wang, M.A. Kamran, M. Farle, B. Zou, Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties. Nano Lett. 13(6), 2997–3001 (2013)ADSCrossRef R. Liu, Z.-A. Li, C. Zhang, X. Wang, M.A. Kamran, M. Farle, B. Zou, Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties. Nano Lett. 13(6), 2997–3001 (2013)ADSCrossRef
63.
Zurück zum Zitat M.J. Bierman, Y.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-driven nanowire growth and Eshelby twist. Science 320(5879), 1060–1063 (2008)ADSCrossRef M.J. Bierman, Y.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-driven nanowire growth and Eshelby twist. Science 320(5879), 1060–1063 (2008)ADSCrossRef
64.
Zurück zum Zitat J. Zhu, H. Peng, A. Marshall, D. Barnett, W. Nix, Y. Cui, Formation of chiral branched nanowires by the Eshelby twist. Nat. Nanotechnol. 3(8), 477–481 (2008)ADSCrossRef J. Zhu, H. Peng, A. Marshall, D. Barnett, W. Nix, Y. Cui, Formation of chiral branched nanowires by the Eshelby twist. Nat. Nanotechnol. 3(8), 477–481 (2008)ADSCrossRef
65.
Zurück zum Zitat S.A. Morin, M.J. Bierman, J. Tong, S. Jin, Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328(5977), 476–480 (2010)ADSCrossRef S.A. Morin, M.J. Bierman, J. Tong, S. Jin, Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328(5977), 476–480 (2010)ADSCrossRef
66.
Zurück zum Zitat S. Jin, M.J. Bierman, S.A. Morin, A new twist on nanowire formation: screw-dislocation-driven growth of nanowires and nanotubes. J. Phys. Chem. Lett. 1(9), 1472–1480 (2010)CrossRef S. Jin, M.J. Bierman, S.A. Morin, A new twist on nanowire formation: screw-dislocation-driven growth of nanowires and nanotubes. J. Phys. Chem. Lett. 1(9), 1472–1480 (2010)CrossRef
67.
Zurück zum Zitat B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4(12), 824–829 (2009)ADSCrossRef B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4(12), 824–829 (2009)ADSCrossRef
68.
Zurück zum Zitat Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012)ADSCrossRef Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012)ADSCrossRef
69.
Zurück zum Zitat B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010)ADSCrossRef B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010)ADSCrossRef
70.
Zurück zum Zitat L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, C.M. Lieber, Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13(2), 746–751 (2013)ADSCrossRef L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, C.M. Lieber, Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13(2), 746–751 (2013)ADSCrossRef
71.
Zurück zum Zitat A. Pevzner, Y. Engel, R. Elnathan, A. Tsukernik, Z. Barkay, F. Patolsky, Confinement-guided shaping of semiconductor nanowires and nanoribbons: “writing with nanowires”. Nano Lett. 12(1), 7–12 (2012)ADSCrossRef A. Pevzner, Y. Engel, R. Elnathan, A. Tsukernik, Z. Barkay, F. Patolsky, Confinement-guided shaping of semiconductor nanowires and nanoribbons: “writing with nanowires”. Nano Lett. 12(1), 7–12 (2012)ADSCrossRef
Metadaten
Titel
Structure-Controlled Synthesis
verfasst von
Anqi Zhang
Gengfeng Zheng
Charles M. Lieber
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41981-7_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.