Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 6/2022

01.06.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure Formation Patterns and Crystallographic Texture in Welded Joints of Medium-Carbon Alloy Steels in the Process of Rotary Friction Welding

verfasst von: E. Yu. Priymak, M. L. Lobanov, S. V. Belikov, M. S. Karabanalov, I. L. Yakovleva

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Using the method of scanning microscopy in the mode of electron backscatter diffraction (EBSD), the structural and textural states of two medium-carbon alloy steels near the joint obtained by rotational friction welding are investigated. In both steels, martensitic structures are detected in the zone of thermal deformation influence, which is characterized by the presence of a pronounced crystallographic texture close to that of the (110)[001] plane with the axis normal to the surface of the joint. Assuming the formation of new phase nuclei at special boundaries Ʃ3, the formation of a practically one-component crystallographic texture is explained by shear transformation of deformed austenite in accordance with multivariate orientation relations of the Kurdyumov–Zaks type.
Literatur
1.
Zurück zum Zitat V. I. Vil’, Friction Welding of Metals (Mashinostroenie, Moscow, 1970) [in Russian]. V. I. Vil’, Friction Welding of Metals (Mashinostroenie, Moscow, 1970) [in Russian].
2.
Zurück zum Zitat M. A. Shtremel’, Strength of Alloys. Part II. Deformation (MISIS, Moscow, 1997) [in Russian]. M. A. Shtremel’, Strength of Alloys. Part II. Deformation (MISIS, Moscow, 1997) [in Russian].
3.
Zurück zum Zitat M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, and L. M. Voronova, “Structure of iron deformed at 250°C by torsion under a pressure,” Phys. Met. Metallogr. 120 (12), 1193–1199 (2019). CrossRef M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, and L. M. Voronova, “Structure of iron deformed at 250°C by torsion under a pressure,” Phys. Met. Metallogr. 120 (12), 1193–1199 (2019). CrossRef
4.
Zurück zum Zitat E. Y. Priymak, I. L. Yakovleva, A. S. Atamashkin, and A. V. Stepanchukova, “Evolution of microstructure in the thermomechanically affected zone of welded joints of medium-carbon steels in the process of rotary friction welding,” Met. Sci. Heat Treat. 62, 731–737 (2021). CrossRef E. Y. Priymak, I. L. Yakovleva, A. S. Atamashkin, and A. V. Stepanchukova, “Evolution of microstructure in the thermomechanically affected zone of welded joints of medium-carbon steels in the process of rotary friction welding,” Met. Sci. Heat Treat. 62, 731–737 (2021). CrossRef
5.
Zurück zum Zitat E. Yu. Priymak, A. V. Stepanchukova, E. V. Bashirova, A. P. Fot, and N. V. Firsova, “Special features of induction annealing of friction stir welded joints of medium-alloy steels,” Met. Sci. Heat Treat. 59, Nos. 9–10, 624–629 (2018). CrossRef E. Yu. Priymak, A. V. Stepanchukova, E. V. Bashirova, A. P. Fot, and N. V. Firsova, “Special features of induction annealing of friction stir welded joints of medium-alloy steels,” Met. Sci. Heat Treat. 59, Nos. 9–10, 624–629 (2018). CrossRef
6.
Zurück zum Zitat M. Stutz, R. Buzolin, F. Pixner, C. Poletti, and N. Enzinger, “Microstructure development of molybdenum during rotary friction welding,” Mater. Charact. 151, 506–518 (2019). CrossRef M. Stutz, R. Buzolin, F. Pixner, C. Poletti, and N. Enzinger, “Microstructure development of molybdenum during rotary friction welding,” Mater. Charact. 151, 506–518 (2019). CrossRef
9.
Zurück zum Zitat S. Mironov, K. Inagaki, Y. S. Sato, and H. Kokawa, “Effect of welding temperature on microstructure of friction-stir welded aluminum alloy 1050,” Metall. Mater. Trans. A 46, 783–790 (2015). CrossRef S. Mironov, K. Inagaki, Y. S. Sato, and H. Kokawa, “Effect of welding temperature on microstructure of friction-stir welded aluminum alloy 1050,” Metall. Mater. Trans. A 46, 783–790 (2015). CrossRef
12.
Zurück zum Zitat J. Jeon, S. Mironov, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, “Grain structure development during friction stir welding of single-crystal austenitic stainless steel,” Metall. Mater. Trans. A 44, 3157–3166 (2013). CrossRef J. Jeon, S. Mironov, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, “Grain structure development during friction stir welding of single-crystal austenitic stainless steel,” Metall. Mater. Trans. A 44, 3157–3166 (2013). CrossRef
13.
Zurück zum Zitat S. Mironov, Y. S. Sato, and H. Kokawa, “Structural response of superaustenitic stainless steel to friction stir welding,” Acta Mater. 59, 5472–5481 (2011). CrossRef S. Mironov, Y. S. Sato, and H. Kokawa, “Structural response of superaustenitic stainless steel to friction stir welding,” Acta Mater. 59, 5472–5481 (2011). CrossRef
15.
Zurück zum Zitat E. Yu. Priymak, A. S. Atamashkin, E. A. Kuzmina, and E. S. Tulibaev, “The use of rotational friction welding for manufacture of exploration drill pipes: Industrial experience and research,” Chernye Metally., No. 4, 37–42 (2020). E. Yu. Priymak, A. S. Atamashkin, E. A. Kuzmina, and E. S. Tulibaev, “The use of rotational friction welding for manufacture of exploration drill pipes: Industrial experience and research,” Chernye Metally., No. 4, 37–42 (2020).
16.
Zurück zum Zitat A. A. Kichkina, M. Yu. Matrosov, L. I. Efron, and M. V. Klyukvin, and A. V. Golovanov, “Effect of structural anisotropy of ferrite-bainite pipe steel of mechanical properties in tensile and impact bending tests,” Metallurgist 54 (11–12), 808–816 (2011). CrossRef A. A. Kichkina, M. Yu. Matrosov, L. I. Efron, and M. V. Klyukvin, and A. V. Golovanov, “Effect of structural anisotropy of ferrite-bainite pipe steel of mechanical properties in tensile and impact bending tests,” Metallurgist 54 (11–12), 808–816 (2011). CrossRef
17.
Zurück zum Zitat M. L. Lobanov, M. D. Borodina, S. V. Danilov, I. Yu. Pyshmintsev, and A. O. Struin, “Texture inheritance on phase transition in low-carbon, low-alloy pipe steel after thermomechanical controlled processing,” Steel Trans. 60 (11), 710–716 (2017). CrossRef M. L. Lobanov, M. D. Borodina, S. V. Danilov, I. Yu. Pyshmintsev, and A. O. Struin, “Texture inheritance on phase transition in low-carbon, low-alloy pipe steel after thermomechanical controlled processing,” Steel Trans. 60 (11), 710–716 (2017). CrossRef
18.
Zurück zum Zitat Lobanov M. L. Lobanov, I. Y. Pyshmintsev, V. N. Urtsev, S. V. Danilov, N. V. Urtsev, and A. A. Redikultsev, “Texture inheritance in the ferrito-martensite structure of low-alloy steel after thermomechanical controlled processing,” Phys. Met. Metallogr. 120 (12), 1180–1186 (2019). CrossRef Lobanov M. L. Lobanov, I. Y. Pyshmintsev, V. N. Urtsev, S. V. Danilov, N. V. Urtsev, and A. A. Redikultsev, “Texture inheritance in the ferrito-martensite structure of low-alloy steel after thermomechanical controlled processing,” Phys. Met. Metallogr. 120 (12), 1180–1186 (2019). CrossRef
19.
Zurück zum Zitat M. L. Lobanov, G. M. Rusakov, A. A. Redikul’tsev, S. V. Belikov, M. S. Karabanalov, E. R. Struina, and A. M. Gervas’ev, “Investigation of special misorientations in lath martensite of low carbon steel using the method of orientation microscopy,” Phys. Met. Metallogr. 117 (3), 254–259 (2016). CrossRef M. L. Lobanov, G. M. Rusakov, A. A. Redikul’tsev, S. V. Belikov, M. S. Karabanalov, E. R. Struina, and A. M. Gervas’ev, “Investigation of special misorientations in lath martensite of low carbon steel using the method of orientation microscopy,” Phys. Met. Metallogr. 117 (3), 254–259 (2016). CrossRef
20.
Zurück zum Zitat V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Crystallographic analysis of the fcc → bcc martensitic transformation in high-carbon steel,” Phys. Met. Metallogr. 115 (10), 973–980 (2014). CrossRef V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Crystallographic analysis of the fcc → bcc martensitic transformation in high-carbon steel,” Phys. Met. Metallogr. 115 (10), 973–980 (2014). CrossRef
21.
Zurück zum Zitat V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Orientation relationship and the mechanism of martensite transformation in medium-carbon steel with batch martensite,” Bull. Russ. Acad. Sci.: Phys. 81 (11), 1289–1294 (2014). CrossRef V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Orientation relationship and the mechanism of martensite transformation in medium-carbon steel with batch martensite,” Bull. Russ. Acad. Sci.: Phys. 81 (11), 1289–1294 (2014). CrossRef
22.
Zurück zum Zitat W. Gong, Y. Toyota, A. M. Paradowska, J. F. Kelleher, and S. Y. Zhang, “Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel,” Acta Mater., No. 61, 4142–4154 (2013). W. Gong, Y. Toyota, A. M. Paradowska, J. F. Kelleher, and S. Y. Zhang, “Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel,” Acta Mater., No. 61, 4142–4154 (2013).
23.
Zurück zum Zitat H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in low-carbon steel,” Acta Mater. 54, 1279–1288 (2006). CrossRef H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in low-carbon steel,” Acta Mater. 54, 1279–1288 (2006). CrossRef
24.
Zurück zum Zitat E. V. Pereloma, Al-H. Fayez, and A. A. Gazder, “The crystallography of carbide-free bainites in thermo-mechanically processed low Si transformation-induced plasticity steels,” J. Alloys Compd. 615, 96–110 (2014). CrossRef E. V. Pereloma, Al-H. Fayez, and A. A. Gazder, “The crystallography of carbide-free bainites in thermo-mechanically processed low Si transformation-induced plasticity steels,” J. Alloys Compd. 615, 96–110 (2014). CrossRef
25.
Zurück zum Zitat M. L. Lobanov, V. I. Pastukhov, and A. A. Redikul’tsev, “Effect of special boundaries on γ → α transformation in austenitic stainless steel,” Phys. Met. Metallogr. 122 (4), 396–402 (2021). CrossRef M. L. Lobanov, V. I. Pastukhov, and A. A. Redikul’tsev, “Effect of special boundaries on γ → α transformation in austenitic stainless steel,” Phys. Met. Metallogr. 122 (4), 396–402 (2021). CrossRef
26.
Zurück zum Zitat M. L. Lobanov, M. A. Zorina, P. L. Reznik, V. I. Pastukhov, A. A. Redikultsev, and S. V. Danilov, “Specific features of crystallographic texture formation in BCC–FCC transformation in extruded brass,” J. Alloys Compd. 882, 160231 (2021). CrossRef M. L. Lobanov, M. A. Zorina, P. L. Reznik, V. I. Pastukhov, A. A. Redikultsev, and S. V. Danilov, “Specific features of crystallographic texture formation in BCC–FCC transformation in extruded brass,” J. Alloys Compd. 882, 160231 (2021). CrossRef
27.
Zurück zum Zitat M. Holscher, D. Raabe, and K. Lucke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater. 42 (3), 879–886 (1994). CrossRef M. Holscher, D. Raabe, and K. Lucke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater. 42 (3), 879–886 (1994). CrossRef
28.
Zurück zum Zitat J. Hirsch, “Textures in industrial aluminum alloys,” in Advances in the Metallurgy of Aluminum Alloys. (ASM-International, Materials Park, 2001), pp. 276–281. J. Hirsch, “Textures in industrial aluminum alloys,” in Advances in the Metallurgy of Aluminum Alloys. (ASM-International, Materials Park, 2001), pp. 276–281.
Metadaten
Titel
Structure Formation Patterns and Crystallographic Texture in Welded Joints of Medium-Carbon Alloy Steels in the Process of Rotary Friction Welding
verfasst von
E. Yu. Priymak
M. L. Lobanov
S. V. Belikov
M. S. Karabanalov
I. L. Yakovleva
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060126

Weitere Artikel der Ausgabe 6/2022

Physics of Metals and Metallography 6/2022 Zur Ausgabe