Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.05.2018 | Biomaterials | Ausgabe 15/2018

Journal of Materials Science 15/2018

Structure, mechanical properties and surface morphology of the snapping shrimp claw

Zeitschrift:
Journal of Materials Science > Ausgabe 15/2018
Autoren:
Zhihui Qian, Mingming Yang, Liang Zhou, Jing Liu, Riaz Akhtar, Chunbao Liu, Yan Liu, Luquan Ren, Lei Ren

Abstract

The snapping shrimp preys by rapidly closing its snapping claw to generate a fast water jet, creating a shockwave that bombards the nearby prey and other shrimp. This behaviour has led to considerable interest and research. However, the structure, surface morphology and mechanical properties of the snapping claw are unreported. We used a combination of techniques including scanning electron microscopy and nanoindentation to characterise the claw. These measurements were coupled with computational fluid dynamics (CFD) to understand how the microstructure contributes to drag reduction. We found that cone-shaped micropapillae, rhombic dents and short straight stripes were hierarchically distributed on the surface of the claw. CFD simulation showed that the micropapillae units changed the interaction between the turbulent and the wall from sliding friction to rolling friction, resulting in tire-shaped vortices. This also reduced the turbulent kinetic energy in the near-wall region, thereby contributing to drag reduction. The cross section of the claw revealed four layers comprising an epicuticle, exocuticle, endocuticle and a membranous layer. The exocuticle is composed of chitin fibres arranged vertically in a lamellar fashion and the endocuticle has a Bouligand-type structure. This special structure provides the snapping shrimp with good mechanical resistance during rapid closure. Both modulus and hardness decreased from the outermost epicuticle to the innermost membranous layer. The gradient modulus and hardness may help to suppress microcracks at the interfaces between different layers. The findings improve our understanding of the unique mechanism of the snapping claw and may lead to the development of novel biomimetic materials with enhanced drag reduction, impact and crack resistance properties.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 15/2018

Journal of Materials Science 15/2018 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise