Skip to main content
Erschienen in: Steel in Translation 3/2020

01.03.2020

Structure, Morphology and Magnetic Properties of Hematite and Maghemite Nanopowders Produced from Rolling Mill Scale

verfasst von: D. B. Kargin, Yu. V. Konyukhov, A. B. Biseken, A. S. Lileev, D. Yu. Karpenkov

Erschienen in: Steel in Translation | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The work is devoted to developing a cost-efficient method for the processing of metallurgical wastes such as oiled mill scale formed upon the mechanical cleaning of a hot-rolled steel strip in scalebreakers. The most significant parameters of a chemical-metallurgical process for producing expensive and highly marketed products, such as α-Fe2O3 and γ-Fe2O3 nanopowders, are experimentally determined. The properties of initial materials and nanodispersed products have been studied by X-ray diffractometry, energy dispersive spectroscopy, scanning and transmission electron microscopy, and Mössbauer spectrometry. The temperature and field dependences for the powder magnetization have been plotted according to the measurements performed with the use of a vibration magnetometer. The mill scale under investigation consists of three main phases: wustite, magnetite and hematite at a weight ratio of 6 : 8 : 7, respectively. The initial scale was activated in a magnetic mill in a hydrogen flow and dissolved in a mixture of hydrochloric and nitric acids. The resulting solutions have been used to obtain α-Fe2O3 nanocrystalline hematite by a chemical-metallurgical method, the main stages of which consist in hydroxide precipitation with the use of alkali at constant pH, washing, drying, and dehydration. Maghemite γ-Fe2O3 has been obtained from hematite in two stages. At the first stage, hydrogen reduction has been performed, whereas at the second stage, the obtained magnetite has been oxidized in air. The particles of synthesized nanodispersed oxide powders are in the aggregated condition. The particles of α-Fe2O3 are spherical, whereas the particles of γ-Fe2O3 are rod-shaped. According to Mössbauer spectroscopy, the lattices of both oxides contain magnesium, aluminum, silicon, chromium, and manganese that originate from the initial scale. These elements determine magnetic properties of α-Fe2O3 and γ-Fe2O3 nanopowders. The set of properties inherent in nanodispersed hematite and maghemite powders obtained from metallurgical wastes (mill scale) is recommended for the application in catalytic processes, in the systems of industrial wastewater purification from heavy metal ions, as well as in the manufacturing of blood analysis markers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jiang, L., Wang, J., Wu, X., and Zhang, G., A stable Fe2O3/expanded perlite composite catalyst for degradation of rhodamine B in heterogeneous photo-fenton system, Water, Air, Soil Pollut., 2017, vol. 228, no. 12, p. 463.CrossRef Jiang, L., Wang, J., Wu, X., and Zhang, G., A stable Fe2O3/expanded perlite composite catalyst for degradation of rhodamine B in heterogeneous photo-fenton system, Water, Air, Soil Pollut., 2017, vol. 228, no. 12, p. 463.CrossRef
2.
Zurück zum Zitat Mondal, A.K., Rabeya, T., and Asad, M.A., Removal of methylene blue from wastewater using Fe2O3 as an adsorbent, Indian J. Adv. Chem. Sci., 2018, vol. 6, no. 4, pp. 200–204. Mondal, A.K., Rabeya, T., and Asad, M.A., Removal of methylene blue from wastewater using Fe2O3 as an adsorbent, Indian J. Adv. Chem. Sci., 2018, vol. 6, no. 4, pp. 200–204.
3.
Zurück zum Zitat Mohapatra, M. and Anand, S., Synthesis and applications of nano-structured iron oxides/hydroxides—a review, Int. J. Eng., Sci. Technol., 2010, vol. 2, no. 8, pp. 127–146. Mohapatra, M. and Anand, S., Synthesis and applications of nano-structured iron oxides/hydroxides—a review, Int. J. Eng., Sci. Technol., 2010, vol. 2, no. 8, pp. 127–146.
4.
Zurück zum Zitat Kour, S., Sharma, R.K., Jasrotia, R., and Singh, V.P., A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications, AIP Conf. Proc., 2019, vol. 2142, no. 1. Kour, S., Sharma, R.K., Jasrotia, R., and Singh, V.P., A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications, AIP Conf. Proc., 2019, vol. 2142, no. 1.
5.
Zurück zum Zitat Barmashov, A.E., Grishechkina, E.V., Dosovitskii, A.E., and Baryshnikova, M.A., Superparamagnetic particles and their application in oncology, Nanotechnol. Russ., 2016, vol. 11, nos. 11–12, pp. 716–726. Barmashov, A.E., Grishechkina, E.V., Dosovitskii, A.E., and Baryshnikova, M.A., Superparamagnetic particles and their application in oncology, Nanotechnol. Russ., 2016, vol. 11, nos. 11–12, pp. 716–726.
6.
Zurück zum Zitat Sivula, K., Le Formal, F., and Grätzel, M., Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes, ChemSusChem, 2011, vol. 4, pp. 432–449.CrossRef Sivula, K., Le Formal, F., and Grätzel, M., Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes, ChemSusChem, 2011, vol. 4, pp. 432–449.CrossRef
7.
Zurück zum Zitat Fedotov, M.A., Kovalenko, L.V., Folmanis, G.E., Samus, M.A., Krasitskaya, S.G., and Tananaev, I.G., Functional materials for radioactive waste management, Nanotechnol. Russ., 2018, vol. 13, nos. 11–12, pp. 578–584.CrossRef Fedotov, M.A., Kovalenko, L.V., Folmanis, G.E., Samus, M.A., Krasitskaya, S.G., and Tananaev, I.G., Functional materials for radioactive waste management, Nanotechnol. Russ., 2018, vol. 13, nos. 11–12, pp. 578–584.CrossRef
8.
Zurück zum Zitat Fedotov, M.A., Gorbunova, O.A., Fedorova, O.V., Folmanis, G.E., and Kovalenko, L.V., Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 81, art. ID 012063. Fedotov, M.A., Gorbunova, O.A., Fedorova, O.V., Folmanis, G.E., and Kovalenko, L.V., Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 81, art. ID 012063.
9.
Zurück zum Zitat Fedotov, M.A., Zinoveev, D.V., Grudinsky, P.I., Kovalenko, L.V., and Dyubanov, V.G., Utilization of red mud and boron-containing liquid radioactive wastes of nuclear power plants, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 525, art. ID 012095. Fedotov, M.A., Zinoveev, D.V., Grudinsky, P.I., Kovalenko, L.V., and Dyubanov, V.G., Utilization of red mud and boron-containing liquid radioactive wastes of nuclear power plants, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 525, art. ID 012095.
10.
Zurück zum Zitat Baek, S.-H., Hong, S.-H., Cho, S.-S., Jang, D.-Yu, and Joo, W.-S., Optimization of process parameters for recycling of mill scale using Taguchi experimental design, J. Mech. Sci. Technol., 2010, vol. 24, no. 10, pp. 2127–2134.CrossRef Baek, S.-H., Hong, S.-H., Cho, S.-S., Jang, D.-Yu, and Joo, W.-S., Optimization of process parameters for recycling of mill scale using Taguchi experimental design, J. Mech. Sci. Technol., 2010, vol. 24, no. 10, pp. 2127–2134.CrossRef
11.
Zurück zum Zitat Sanin, V.N., Ikornikov, D.M., Andreev, D.E., Sachkova, N.V., and Yukhvid, V.I., Mill scale recycling by SHS metallurgy for production of cast ferrosilicon and ferrosilicoaluminium, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 558, art. ID 012041. Sanin, V.N., Ikornikov, D.M., Andreev, D.E., Sachkova, N.V., and Yukhvid, V.I., Mill scale recycling by SHS metallurgy for production of cast ferrosilicon and ferrosilicoaluminium, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 558, art. ID 012041.
12.
Zurück zum Zitat Nanopowders, US research nanomaterials. http://www.us-nano.com/nanopowders. Accessed December 18, 2019. Nanopowders, US research nanomaterials. http://​www.​us-nano.​com/​nanopowders.​ Accessed December 18, 2019.
13.
Zurück zum Zitat Fouad, D.E., Zhang, C., El-Didamony, H., Yingnan, L., Mekuria, T.D., and Shah, A.H., Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor, Results Phys., 2019, vol. 12, pp. 1253–1261.CrossRef Fouad, D.E., Zhang, C., El-Didamony, H., Yingnan, L., Mekuria, T.D., and Shah, A.H., Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor, Results Phys., 2019, vol. 12, pp. 1253–1261.CrossRef
14.
Zurück zum Zitat Fouada, D.E., Zhanga, C., Mekuria, T.D., Bi, C., Zaidi, A.A., and Shah, A.H., Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α‑Fe2O3) nanoparticles: a comparative study, Ultrasonics Sonochem., 2019, vol. 59, art. ID 104713.CrossRef Fouada, D.E., Zhanga, C., Mekuria, T.D., Bi, C., Zaidi, A.A., and Shah, A.H., Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α‑Fe2O3) nanoparticles: a comparative study, Ultrasonics Sonochem., 2019, vol. 59, art. ID 104713.CrossRef
15.
Zurück zum Zitat Godymchuk, A., Papina, L., Karepina, E., Kuznetsov, D., Lapin, I., and Svetlichnyi, V., Agglomeration of iron oxide nanoparticles: pH effect is stronger than amino acid acidity, J. Nanopart. Res., 2019, vol. 21, no. 10, art. ID 208.CrossRef Godymchuk, A., Papina, L., Karepina, E., Kuznetsov, D., Lapin, I., and Svetlichnyi, V., Agglomeration of iron oxide nanoparticles: pH effect is stronger than amino acid acidity, J. Nanopart. Res., 2019, vol. 21, no. 10, art. ID 208.CrossRef
16.
Zurück zum Zitat Alymov, M.I., Rubtsov, N.M., Seplyarskii, B.S., Zelensky, V.A., and Ankudinov, A.B., Temporal characteristics of ignition and combustion of iron nanopowders in air, Mendeleev Commun., 2016, vol. 26, no. 5, pp. 452–454.CrossRef Alymov, M.I., Rubtsov, N.M., Seplyarskii, B.S., Zelensky, V.A., and Ankudinov, A.B., Temporal characteristics of ignition and combustion of iron nanopowders in air, Mendeleev Commun., 2016, vol. 26, no. 5, pp. 452–454.CrossRef
17.
Zurück zum Zitat Alymov, M.I., Rubtsov, N.M., Seplyarskii, B.S., Zelensky, V.A., and Ankudinov, A.B., Synthesis and characterization of passivated iron nanoparticles, Mendeleev Commun., 2016, vol. 26, no. 6, pp. 549–551.CrossRef Alymov, M.I., Rubtsov, N.M., Seplyarskii, B.S., Zelensky, V.A., and Ankudinov, A.B., Synthesis and characterization of passivated iron nanoparticles, Mendeleev Commun., 2016, vol. 26, no. 6, pp. 549–551.CrossRef
18.
Zurück zum Zitat Konyukhov, Yu.V., Nguyen, V.M., and Ryzhonkov, D.I., Kinetics of reduction of α-Fe2O3 nanopowder with hydrogen under power mechanical treatment in an electromagnetic field, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 3, pp. 705–711. Konyukhov, Yu.V., Nguyen, V.M., and Ryzhonkov, D.I., Kinetics of reduction of α-Fe2O3 nanopowder with hydrogen under power mechanical treatment in an electromagnetic field, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 3, pp. 705–711.
19.
Zurück zum Zitat Konyukhov, Yu.V., Ryzhonkov, D.I., Levina, V.V., and Dzidzuguri, E.L., Producing iron nanopowders from iron ore, Steel Transl., 2005, vol. 35, no. 3, pp. 17–21. Konyukhov, Yu.V., Ryzhonkov, D.I., Levina, V.V., and Dzidzuguri, E.L., Producing iron nanopowders from iron ore, Steel Transl., 2005, vol. 35, no. 3, pp. 17–21.
20.
Zurück zum Zitat De Los Santos Valladares, L., Bustamante Domínguez, A., León Félix, L., Kargin, J.B., Mukhambetov, D.G., Kozlovskiy, A.L., Moreno N.O., Flores Santibañez, J.F., Castellanos Cabrera, R., and Barnes, C.H.W., Characterization and magnetic properties of hollow α-Fe2O3 microspheres obtained by sol gel and spray roasting methods, J. Sci.: Adv. Mater. Devices, 2019, vol. 4, no. 3, pp. 483–491. De Los Santos Valladares, L., Bustamante Domínguez, A., León Félix, L., Kargin, J.B., Mukhambetov, D.G., Kozlovskiy, A.L., Moreno N.O., Flores Santibañez, J.F., Castellanos Cabrera, R., and Barnes, C.H.W., Characterization and magnetic properties of hollow α-Fe2O3 microspheres obtained by sol gel and spray roasting methods, J. Sci.: Adv. Mater. Devices, 2019, vol. 4, no. 3, pp. 483–491.
Metadaten
Titel
Structure, Morphology and Magnetic Properties of Hematite and Maghemite Nanopowders Produced from Rolling Mill Scale
verfasst von
D. B. Kargin
Yu. V. Konyukhov
A. B. Biseken
A. S. Lileev
D. Yu. Karpenkov
Publikationsdatum
01.03.2020
Verlag
Pleiades Publishing
Erschienen in
Steel in Translation / Ausgabe 3/2020
Print ISSN: 0967-0912
Elektronische ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091220030055

Weitere Artikel der Ausgabe 3/2020

Steel in Translation 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.