Skip to main content
Erschienen in: Cellulose 3/2016

09.03.2016 | Original Paper

Structure of cellulose/direct dye complex regenerated from supercritical water

verfasst von: Hitomi Miyamoto, Yoshiaki Yuguchi, Dmitry M. Rein, Yachin Cohen, Kazuyoshi Ueda, Chihiro Yamane

Erschienen in: Cellulose | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The regeneration of cellulose from supercritical water in the presence of direct dyes was studied by small- and wide-angle synchrotron X-ray scattering and cryo-transmission electron microscopy to understand the effects of dyes on the structure formation of cellulose. In addition, the interactions between cellulose and the direct dyes were characterized using molecular dynamics simulations. Peaks corresponding to cellulose II crystals were observed in the wide-angle X-ray diffraction pattern of cellulose regenerated from supercritical water without dyes, whereas these peaks were not observed in the diffraction patterns of samples with direct dye (Direct Red 28 or Direct Blue 1). This result indicated that the direct dyes prevented the crystallization of regenerated cellulose. The results of the molecular dynamics simulations indicated that the planes of glucose rings interacted with the aromatic moieties of the dyes and that the sulfonate groups of the dye molecules interacted with the hydroxyl groups of cellulose. In addition, the CH groups of the glucose rings and aromatic moieties of the dyes (e.g., naphthalene and biphenyl moieties) interacted weekly. When cellulose regenerates from solution, cellulose sheet structures formed via hydrophobic interactions appear as the initial structure. The direct dyes were found to affect the formation of this cellulose sheet structure because cellulose molecularly dissolved in supercritical water. In the Kratky plots for small-angle X-ray scattering, a peak was clearly observed for the cellulose and cellulose/DR28 samples in the region of smaller q (<0.5), indicating that the nanoscale assembly structures dispersed in these systems. Bundled sheet-like and twisted ribbon-like structures were observed in the supernatants of the cellulose and cellulose/DR28 samples. These dispersed structures were considered to be intermediates in the structural formation of cellulose.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr Sect B 58:380–388CrossRef Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr Sect B 58:380–388CrossRef
Zurück zum Zitat Beglov D, Roux B (1994) Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. J Chem Phys 100(12):9050–9063CrossRef Beglov D, Roux B (1994) Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. J Chem Phys 100(12):9050–9063CrossRef
Zurück zum Zitat Bellare JR, Davis HT, Scriven LE, Talmon Y (1988) Controlled environment vitrification system: an improved sample preparation technique. J Electron Microsc Tech 10(1):87–111CrossRef Bellare JR, Davis HT, Scriven LE, Talmon Y (1988) Controlled environment vitrification system: an improved sample preparation technique. J Electron Microsc Tech 10(1):87–111CrossRef
Zurück zum Zitat Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRef Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRef
Zurück zum Zitat Brooks BR, Brooks CL III, MacKerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRef Brooks BR, Brooks CL III, MacKerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRef
Zurück zum Zitat Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092CrossRef Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092CrossRef
Zurück zum Zitat Durell SR, Brooks BR, Ben-Naim A (1994) Solvent-induced forces between two hydrophilic groups. J Chem Phys 98:2198–2202CrossRef Durell SR, Brooks BR, Ben-Naim A (1994) Solvent-induced forces between two hydrophilic groups. J Chem Phys 98:2198–2202CrossRef
Zurück zum Zitat French AD (1989) Computer models of cellulose. In: Schuerch C (ed) Cellulose and wood-chemistry and technology. Wiley: New York, pp 103–118 French AD (1989) Computer models of cellulose. In: Schuerch C (ed) Cellulose and wood-chemistry and technology. Wiley: New York, pp 103–118
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A.1, Gaussian Inc., Wallingford, CT Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A.1, Gaussian Inc., Wallingford, CT
Zurück zum Zitat Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London
Zurück zum Zitat Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comp Chem 29:2543–2564CrossRef Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comp Chem 29:2543–2564CrossRef
Zurück zum Zitat Guvench O, Hatcher E, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370CrossRef Guvench O, Hatcher E, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370CrossRef
Zurück zum Zitat Hayashi J, Masuda S, Watanabe S (1974) Plane lattice structure in amorphous region of cellulose fibers. J Chem Soc Jap Chem Ind Chem (Nippon Kagaku Kaishi) 5:948–954 Hayashi J, Masuda S, Watanabe S (1974) Plane lattice structure in amorphous region of cellulose fibers. J Chem Soc Jap Chem Ind Chem (Nippon Kagaku Kaishi) 5:948–954
Zurück zum Zitat Hermans PH (1949) Degree of lateral order in various rayons as deduced from X-ray measurements. J Polym Sci 4:145–151CrossRef Hermans PH (1949) Degree of lateral order in various rayons as deduced from X-ray measurements. J Polym Sci 4:145–151CrossRef
Zurück zum Zitat Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. J Appl Phys 19:491–506CrossRef Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. J Appl Phys 19:491–506CrossRef
Zurück zum Zitat Hisano J, Goto A, Okajima K (1991) Edible body and process for preparation there of, US Patent 4994285 Hisano J, Goto A, Okajima K (1991) Edible body and process for preparation there of, US Patent 4994285
Zurück zum Zitat Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697CrossRef Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697CrossRef
Zurück zum Zitat Hu SQ, Gao YG, Tajima K, Sunagawa N, Zhou Y, Kawano S, Fujiwara T, Yoda T, Shimura D, Satoh Y, Munekata M, Tanaka I, Yao M (2010) Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proc Natl Acad Sci 107:17957–17961CrossRef Hu SQ, Gao YG, Tajima K, Sunagawa N, Zhou Y, Kawano S, Fujiwara T, Yoda T, Shimura D, Satoh Y, Munekata M, Tanaka I, Yao M (2010) Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proc Natl Acad Sci 107:17957–17961CrossRef
Zurück zum Zitat Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRef Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRef
Zurück zum Zitat Isobe N, Kimura S, Wada M, Kuga S (2012) Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohydr Polym 89:1298–1300CrossRef Isobe N, Kimura S, Wada M, Kuga S (2012) Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohydr Polym 89:1298–1300CrossRef
Zurück zum Zitat Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef
Zurück zum Zitat Kai A, Mondal IH (1997) Influence of substituent of direct dye having bisphenylenebis(azo) skeletal structure on structure of nascent cellulose produced by Acetobacter xylinum [I]: different influence of direct red 28, blue 1 and 15 on nascent structure. Int J Biol Macromol 20:221–231CrossRef Kai A, Mondal IH (1997) Influence of substituent of direct dye having bisphenylenebis(azo) skeletal structure on structure of nascent cellulose produced by Acetobacter xylinum [I]: different influence of direct red 28, blue 1 and 15 on nascent structure. Int J Biol Macromol 20:221–231CrossRef
Zurück zum Zitat Kamide K, Saito M, Kousaka K (1987) Temperature dependence of limiting viscosity number and radius of gyration for cellulose dissolved in aqueous 8% sodium hydroxide solution. Polym J 19:1173–1181CrossRef Kamide K, Saito M, Kousaka K (1987) Temperature dependence of limiting viscosity number and radius of gyration for cellulose dissolved in aqueous 8% sodium hydroxide solution. Polym J 19:1173–1181CrossRef
Zurück zum Zitat Kido H, Kai A (1998) Structure of nascent microbial cellulose IV. Influence of size and substitution groups of direct dye on nascent microbial cellulose. Polym J 30:508–512CrossRef Kido H, Kai A (1998) Structure of nascent microbial cellulose IV. Influence of size and substitution groups of direct dye on nascent microbial cellulose. Polym J 30:508–512CrossRef
Zurück zum Zitat Kobayashi K, Kimura S, Togawa E, Wada M (2011a) Crystal transition from Na–cellulose IV to cellulose II monitored using synchrotron X-ray diffraction. Carbohydr Polym 83:483–488CrossRef Kobayashi K, Kimura S, Togawa E, Wada M (2011a) Crystal transition from Na–cellulose IV to cellulose II monitored using synchrotron X-ray diffraction. Carbohydr Polym 83:483–488CrossRef
Zurück zum Zitat Kobayashi K, Kimura S, Togawa E, Wada M (2011b) Crystal transition from cellulose II hydrate to cellulose II. Carbohydr Polym 86:975–981CrossRef Kobayashi K, Kimura S, Togawa E, Wada M (2011b) Crystal transition from cellulose II hydrate to cellulose II. Carbohydr Polym 86:975–981CrossRef
Zurück zum Zitat Król M, Borowski T, Roterman I, Piekarska B, Stopa B, Rybarska J, Konieczny L (2004) Force-field parametrization and molecular dynamics simulations of congo red. J Comput Aided Mol Des 18:41–53CrossRef Król M, Borowski T, Roterman I, Piekarska B, Stopa B, Rybarska J, Konieczny L (2004) Force-field parametrization and molecular dynamics simulations of congo red. J Comput Aided Mol Des 18:41–53CrossRef
Zurück zum Zitat Kuga S, Takagi S, Brown RM Jr (1993) Native folded-chain cellulose II. Polymer 34(15):3293–3297CrossRef Kuga S, Takagi S, Brown RM Jr (1993) Native folded-chain cellulose II. Polymer 34(15):3293–3297CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRef Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRef
Zurück zum Zitat Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Ib and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562CrossRef Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Ib and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562CrossRef
Zurück zum Zitat Lee DM, Blackwell J (1981a) Structure of cellulose II hydrate. Biopolymers 20:2165–2179CrossRef Lee DM, Blackwell J (1981a) Structure of cellulose II hydrate. Biopolymers 20:2165–2179CrossRef
Zurück zum Zitat Lee DM, Blackwell J (1981b) Cellulose-hydrazine complexes. J Polym Sci 19:459–465 Lee DM, Blackwell J (1981b) Cellulose-hydrazine complexes. J Polym Sci 19:459–465
Zurück zum Zitat Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRef Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRef
Zurück zum Zitat Lukanov B, Firoozabadi A (2014) Specific ion effects on the self-assembly of ionic surfactants: a molecular thermodynamic theory of micellization with dispersion. Langmuir 30:6373–6383CrossRef Lukanov B, Firoozabadi A (2014) Specific ion effects on the self-assembly of ionic surfactants: a molecular thermodynamic theory of micellization with dispersion. Langmuir 30:6373–6383CrossRef
Zurück zum Zitat Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van De Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Cryst 39:453–457CrossRef Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van De Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Cryst 39:453–457CrossRef
Zurück zum Zitat Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470CrossRef Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470CrossRef
Zurück zum Zitat Marcus Y (1986) Ion soluation. Wiley, Chichester, UK Marcus Y (1986) Ion soluation. Wiley, Chichester, UK
Zurück zum Zitat Mazeau K, Wyszomirski M (2012) Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 19:1495–1506CrossRef Mazeau K, Wyszomirski M (2012) Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 19:1495–1506CrossRef
Zurück zum Zitat Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40CrossRef Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40CrossRef
Zurück zum Zitat Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508CrossRef Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508CrossRef
Zurück zum Zitat Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef
Zurück zum Zitat Miyamoto I, Inamoto M, Matsui T, Saito M, Okajima K (1995a) Studies on structure of cuprammonium cellulose I. A circular dichroism study on the dissolved state of cellulose in cuprammonium solution. Polym J 27:1113–1122CrossRef Miyamoto I, Inamoto M, Matsui T, Saito M, Okajima K (1995a) Studies on structure of cuprammonium cellulose I. A circular dichroism study on the dissolved state of cellulose in cuprammonium solution. Polym J 27:1113–1122CrossRef
Zurück zum Zitat Miyamoto I, Matsuoka Y, Matsui T, Okajima K (1995b) Studies on structure of cuprammonium cellulose II. Structural change of cellulose-cuprammonium complex as a function of hydroxyl ion concentration. Polym J 27:1123–1131CrossRef Miyamoto I, Matsuoka Y, Matsui T, Okajima K (1995b) Studies on structure of cuprammonium cellulose II. Structural change of cellulose-cuprammonium complex as a function of hydroxyl ion concentration. Polym J 27:1123–1131CrossRef
Zurück zum Zitat Miyamoto H, Umemura M, Aoyagi T, Yamane C, Ueda K, Takahashi K (2009) Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Carbohydr Res 344:1085–1094CrossRef Miyamoto H, Umemura M, Aoyagi T, Yamane C, Ueda K, Takahashi K (2009) Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Carbohydr Res 344:1085–1094CrossRef
Zurück zum Zitat Miyamoto H, Ago M, Yamane C, Seguchi M, Ueda K, Okajima K (2011) Supermolecular structure of cellulose/amylose blends prepared from aqueous NaOH solutions and effects of amylose on structural formation of cellulose from its solution. Carbohydr Res 346:807–814CrossRef Miyamoto H, Ago M, Yamane C, Seguchi M, Ueda K, Okajima K (2011) Supermolecular structure of cellulose/amylose blends prepared from aqueous NaOH solutions and effects of amylose on structural formation of cellulose from its solution. Carbohydr Res 346:807–814CrossRef
Zurück zum Zitat Miyamoto H, Yamane C, Ueda K (2013) Structural changes in the molecular sheets along (hk0) planes derived from cellulose Ib by molecular dynamics simulations. Cellulose 20:1089–1098CrossRef Miyamoto H, Yamane C, Ueda K (2013) Structural changes in the molecular sheets along (hk0) planes derived from cellulose Ib by molecular dynamics simulations. Cellulose 20:1089–1098CrossRef
Zurück zum Zitat Miyamoto H, Tsuduki M, Ago M, Yamane C, Ueda M, Okajima K (2014a) Influence of dyestuffs on the crystallinity of a bacterial cellulose and a regenerated cellulose. Text Res J 84(11):1147–1158CrossRef Miyamoto H, Tsuduki M, Ago M, Yamane C, Ueda M, Okajima K (2014a) Influence of dyestuffs on the crystallinity of a bacterial cellulose and a regenerated cellulose. Text Res J 84(11):1147–1158CrossRef
Zurück zum Zitat Miyamoto H, Abdullah R, Tokimura H, Hayakawa D, Ueda K, Saka S (2014b) Molecular dynamics simulation of dissociation behavior of various crystalline celluloses treated with hot-compressed water. Cellulose 21:3203–3215CrossRef Miyamoto H, Abdullah R, Tokimura H, Hayakawa D, Ueda K, Saka S (2014b) Molecular dynamics simulation of dissociation behavior of various crystalline celluloses treated with hot-compressed water. Cellulose 21:3203–3215CrossRef
Zurück zum Zitat Miyamoto H, Yamane C, Ueda K (2015) Molecular dynamics simulation of dehydration in cellulose/water crystals. Cellulose 22:2899–2910CrossRef Miyamoto H, Yamane C, Ueda K (2015) Molecular dynamics simulation of dehydration in cellulose/water crystals. Cellulose 22:2899–2910CrossRef
Zurück zum Zitat Nishimura H, Sarko A (1991) Mercerization of cellulose. 6. Crystal and molecular structure of Na-cellulose IV. Macromolecules 24:771–778CrossRef Nishimura H, Sarko A (1991) Mercerization of cellulose. 6. Crystal and molecular structure of Na-cellulose IV. Macromolecules 24:771–778CrossRef
Zurück zum Zitat Quenin I, Henrissat B (1985) Precipitation and crystallization of cellulose doped with dyes. Makromol Chem Rapid Commun 6:737–741CrossRef Quenin I, Henrissat B (1985) Precipitation and crystallization of cellulose doped with dyes. Makromol Chem Rapid Commun 6:737–741CrossRef
Zurück zum Zitat Rowland RS, Taylor RJ (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. Phys Chem 100:7384–7391CrossRef Rowland RS, Taylor RJ (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. Phys Chem 100:7384–7391CrossRef
Zurück zum Zitat Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890CrossRef Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890CrossRef
Zurück zum Zitat Sasaki M, Adschiri T, Arai K (2003) Production of cellulose II from native cellulose by near- and supercritical water solubilization. J Agric Food Chem 51:5376–5381CrossRef Sasaki M, Adschiri T, Arai K (2003) Production of cellulose II from native cellulose by near- and supercritical water solubilization. J Agric Food Chem 51:5376–5381CrossRef
Zurück zum Zitat Scherrer P (1918) Bestimmung der größe und der inneren struktur von kolloidteilchen mittels rö ntgenstrahlen. Göttinger Nachrichten 2:98–100 Scherrer P (1918) Bestimmung der größe und der inneren struktur von kolloidteilchen mittels rö ntgenstrahlen. Göttinger Nachrichten 2:98–100
Zurück zum Zitat Simon I, Scheraga HA, Manley RSJ (1988a) Structure of cellulose. 1. Low-energy conformations of single chains. Macromolecules 21:983–990CrossRef Simon I, Scheraga HA, Manley RSJ (1988a) Structure of cellulose. 1. Low-energy conformations of single chains. Macromolecules 21:983–990CrossRef
Zurück zum Zitat Simon I, Glasser L, Scheraga HA, Manley RSJ (1988b) Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21:990–998CrossRef Simon I, Glasser L, Scheraga HA, Manley RSJ (1988b) Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21:990–998CrossRef
Zurück zum Zitat Takahashi O, Kohno Y, Nishio M (2010) Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: evidence from recent experimental data and high-level ab initio MO calculations. Chem Rev 110:6049–6076CrossRef Takahashi O, Kohno Y, Nishio M (2010) Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: evidence from recent experimental data and high-level ab initio MO calculations. Chem Rev 110:6049–6076CrossRef
Zurück zum Zitat Talmon Y (1996) Transmission electron microscopy of complex fluids: the State of the Art. Ber Bunsen Phys Chem (Berichte der Bunsengesellschaft für physikalische Chemie) 100(3):364–372CrossRef Talmon Y (1996) Transmission electron microscopy of complex fluids: the State of the Art. Ber Bunsen Phys Chem (Berichte der Bunsengesellschaft für physikalische Chemie) 100(3):364–372CrossRef
Zurück zum Zitat Tanaka F, Fukui N (2000) Is the folded-chain structure possible in cellulose molecule? Sen’i Gakkaishi 56:402–409CrossRef Tanaka F, Fukui N (2000) Is the folded-chain structure possible in cellulose molecule? Sen’i Gakkaishi 56:402–409CrossRef
Zurück zum Zitat Uto T, Mawatari S, Yui T (2014) Theoretical Study of the Structural Stability of Molecular Chain Sheet Models of Cellulose Crystal Allomorphs. J Phys Chem B 118(31):9313–9321CrossRef Uto T, Mawatari S, Yui T (2014) Theoretical Study of the Structural Stability of Molecular Chain Sheet Models of Cellulose Crystal Allomorphs. J Phys Chem B 118(31):9313–9321CrossRef
Zurück zum Zitat van Gunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34(5):1311–1327CrossRef van Gunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34(5):1311–1327CrossRef
Zurück zum Zitat Wada M, Heux L, Nishiyama Y, Langan P (2009) The structure of the complex of cellulose I with ethylenediamine by X-ray crystallography and cross-polarization/magic angle spinning 13C nuclear magnetic resonance. Cellulose 16:943–957CrossRef Wada M, Heux L, Nishiyama Y, Langan P (2009) The structure of the complex of cellulose I with ethylenediamine by X-ray crystallography and cross-polarization/magic angle spinning 13C nuclear magnetic resonance. Cellulose 16:943–957CrossRef
Zurück zum Zitat Wada M, Nishiyama Y, Bellesia G, Forsyth T, Gnanakaran S, Langan P (2011) Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose 18:191–206CrossRef Wada M, Nishiyama Y, Bellesia G, Forsyth T, Gnanakaran S, Langan P (2011) Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose 18:191–206CrossRef
Zurück zum Zitat Woodcock S, Henrissa B, Sugiyama J (1995) Docking of congo red to the docking of congo red to the using molecular mechanics. Biopolymers 36:201–210CrossRef Woodcock S, Henrissa B, Sugiyama J (1995) Docking of congo red to the docking of congo red to the using molecular mechanics. Biopolymers 36:201–210CrossRef
Zurück zum Zitat Yachi T, Hayashi J, Takai M, Shimizu Y (1983) Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. J Appl Polym Sci Appl Polym Symp 37:325–343 Yachi T, Hayashi J, Takai M, Shimizu Y (1983) Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. J Appl Polym Sci Appl Polym Symp 37:325–343
Zurück zum Zitat Yamane C, Miyamoto H, Hayakawa D, Ueda K (2013) Folded-chain structure of cellulose II suggested by molecular dynamics simulation. Carbohydr Res 379:30–37CrossRef Yamane C, Miyamoto H, Hayakawa D, Ueda K (2013) Folded-chain structure of cellulose II suggested by molecular dynamics simulation. Carbohydr Res 379:30–37CrossRef
Zurück zum Zitat Yamane C, Hirase R, Miyamoto H, Kuwamoto S, Yuguchi Y (2015) Mechanism of structure formation and dissolution of regenerated cellulose from cellulose/aqueous sodium hydroxide solution and formation of molecular sheets deduced from the mechanism. Cellulose 22:2971–2982CrossRef Yamane C, Hirase R, Miyamoto H, Kuwamoto S, Yuguchi Y (2015) Mechanism of structure formation and dissolution of regenerated cellulose from cellulose/aqueous sodium hydroxide solution and formation of molecular sheets deduced from the mechanism. Cellulose 22:2971–2982CrossRef
Zurück zum Zitat Yasuda K, Saito M, Kamide K (1993) Flow birefringence and viscosity of cellulose solutions in semi-dilute regime. Polym Int 30:393–400CrossRef Yasuda K, Saito M, Kamide K (1993) Flow birefringence and viscosity of cellulose solutions in semi-dilute regime. Polym Int 30:393–400CrossRef
Zurück zum Zitat Yuguchi Y, Hirotsu T, Hosokawa J (2005) Structural characteristics of xyloglucan–congo red aggregates as observed by small angle X-ray scattering. Cellulose 12:469–477CrossRef Yuguchi Y, Hirotsu T, Hosokawa J (2005) Structural characteristics of xyloglucan–congo red aggregates as observed by small angle X-ray scattering. Cellulose 12:469–477CrossRef
Metadaten
Titel
Structure of cellulose/direct dye complex regenerated from supercritical water
verfasst von
Hitomi Miyamoto
Yoshiaki Yuguchi
Dmitry M. Rein
Yachin Cohen
Kazuyoshi Ueda
Chihiro Yamane
Publikationsdatum
09.03.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0900-7

Weitere Artikel der Ausgabe 3/2016

Cellulose 3/2016 Zur Ausgabe