Skip to main content
Erschienen in: Physics of Metals and Metallography 4/2020

01.04.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure, Phase Composition, and Mechanical Properties of Biocompatible Titanium Alloys of Different Types

verfasst von: A. G. Illarionov, A. G. Nezhdanov, S. I. Stepanov, G. Muller-Kamskii, A. A. Popov

Erschienen in: Physics of Metals and Metallography | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure and phase composition of biocompatible titanium alloys of composition (wt %) Ti–10Zr–1.2Nb–1.5Al, Ti–6Al–4V (ELI), Ti–15Mo, and Ti–36.1Nb–3.8Zr–2.4Ta–1.9Sn have been studied in a hot-deformed state using scanning electron microscopy and X-ray diffraction analysis. The analysis of mechanical tensile properties has been performed depending on the structure and the aluminum strength equivalent of the alloys. The elasticity moduli of the alloys have been determined using tensile tests, dynamic mechanical analysis, and microindentation; the comparability of values within the error of 3–7% has been established. The nonmonotonic character of the change of the elasticity modulus upon heating to 550°C is explained in terms of the occurrence of processes of stress relaxation and recovery in the Ti–10Zr–1.2Nb–1.5Al, and Ti–6Al–4V ELI alloys and based on the precipitation of the high-modulus ω phase in the Ti–15Mo alloy. For the Ti–36.1Nb–3.8Zr–2.4Ta–1.9Sn alloy, the realization of the elinvar effect has been demonstrated. A correlation of the rate of change in the elasticity modulus with the heating temperature and the ratio of α and β phases in the structure of the alloys has been established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng., A 243, 231–236 (1998).CrossRef M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng., A 243, 231–236 (1998).CrossRef
2.
Zurück zum Zitat M. Yu. Kollerov, V. S. Spektor, S. V. Skvortsova, A. M. Mamonov, D. E. Gusev, and G. V. Gurtovaya, “Problems and prospectives of application of titanium alloys in medicine,” Titan, No. 2, 42–53 (2015). M. Yu. Kollerov, V. S. Spektor, S. V. Skvortsova, A. M. Mamonov, D. E. Gusev, and G. V. Gurtovaya, “Problems and prospectives of application of titanium alloys in medicine,” Titan, No. 2, 42–53 (2015).
3.
Zurück zum Zitat D. Banerjee and J. C. Williams, “Perspectives on titanium science and technology,” Acta Mater. 61, 844–879 (2013).CrossRef D. Banerjee and J. C. Williams, “Perspectives on titanium science and technology,” Acta Mater. 61, 844–879 (2013).CrossRef
4.
Zurück zum Zitat K. Wang, “The use of titanium for medical applications in the USA,” Mater. Sci. Eng., A 213, 134–137 (1996).CrossRef K. Wang, “The use of titanium for medical applications in the USA,” Mater. Sci. Eng., A 213, 134–137 (1996).CrossRef
5.
Zurück zum Zitat A. G. Illarionov, N. V. Shchetnikov, S. M. Illarionova and A. A. Popov, “Effect of heating temperature on the formation of structure and phase composition of a biocompatible alloy Ti–6AL–4V–ELI subjected to equal-channel angular pressing,” Phys. Met. Metallogr. 118, 272–278 (2017).CrossRef A. G. Illarionov, N. V. Shchetnikov, S. M. Illarionova and A. A. Popov, “Effect of heating temperature on the formation of structure and phase composition of a biocompatible alloy Ti–6AL–4V–ELI subjected to equal-channel angular pressing,” Phys. Met. Metallogr. 118, 272–278 (2017).CrossRef
6.
Zurück zum Zitat A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wena, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012).CrossRef A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wena, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012).CrossRef
7.
Zurück zum Zitat V. V. Tetyukhin, N. Yu. Tarenkova, I. Yu. Puzakov, and M. A. Kornilova, RF Patent No. 2479657 (2013). V. V. Tetyukhin, N. Yu. Tarenkova, I. Yu. Puzakov, and M. A. Kornilova, RF Patent No. 2479657 (2013).
8.
Zurück zum Zitat M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater. 1, 30–42 (2008).CrossRef M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater. 1, 30–42 (2008).CrossRef
9.
Zurück zum Zitat W. F. Ho, “A comparison of tensile properties and corrosion behavior of cast Ti–7.5Mo with c.p. Ti, Ti–15Mo and Ti–6Al–4V alloys,” J. Alloys Compd. 464, 580–583 (2008).CrossRef W. F. Ho, “A comparison of tensile properties and corrosion behavior of cast Ti–7.5Mo with c.p. Ti, Ti–15Mo and Ti–6Al–4V alloys,” J. Alloys Compd. 464, 580–583 (2008).CrossRef
10.
Zurück zum Zitat M. Geeta, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopedic implants – A review,” Prog. Mater. Sci. 54, 397–425 (2009).CrossRef M. Geeta, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopedic implants – A review,” Prog. Mater. Sci. 54, 397–425 (2009).CrossRef
11.
Zurück zum Zitat A. G. Illarionov, S. V. Grib, S. M. Illarionova and A. A. Popov, “Relationship between structure, phase composition, and physicomechanical properties of quenched Ti–Nb alloys,” Phys. Met. Metallogr. 120, 150–156 (2019).CrossRef A. G. Illarionov, S. V. Grib, S. M. Illarionova and A. A. Popov, “Relationship between structure, phase composition, and physicomechanical properties of quenched Ti–Nb alloys,” Phys. Met. Metallogr. 120, 150–156 (2019).CrossRef
12.
Zurück zum Zitat Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, “New developments of Ti-based alloys for biomedical applications,” Materials 7, 1709–1800 (2014).CrossRef Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, “New developments of Ti-based alloys for biomedical applications,” Materials 7, 1709–1800 (2014).CrossRef
13.
Zurück zum Zitat S. Guo, Q. Meng, X. Zhao, Q. Wet, H. Xu, “Design and fabrication of metastable β-type titanium alloy with ultralow elastic modulus and high strength,” Sci. Rep. 5, 14688 (2015).CrossRef S. Guo, Q. Meng, X. Zhao, Q. Wet, H. Xu, “Design and fabrication of metastable β-type titanium alloy with ultralow elastic modulus and high strength,” Sci. Rep. 5, 14688 (2015).CrossRef
14.
Zurück zum Zitat V. A. Sheremetyev, S. D. Prokoshkin, V. Brailovski, S. M. Dubinskiy, A. V. Korotitskiy, M. R. Filonov, and M. I. Petrzhik, “Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti–Nb–Zr and Ti–Nb–Ta shape-memory alloys,” Phys. Met. Metallogr. 116, 413–422 (2015).CrossRef V. A. Sheremetyev, S. D. Prokoshkin, V. Brailovski, S. M. Dubinskiy, A. V. Korotitskiy, M. R. Filonov, and M. I. Petrzhik, “Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti–Nb–Zr and Ti–Nb–Ta shape-memory alloys,” Phys. Met. Metallogr. 116, 413–422 (2015).CrossRef
15.
Zurück zum Zitat K. Wouters, P. Gijsenbergh, and R. Puers, “Comparison of methods for the mechanical characterization of polymers for MEMS applications,” J. Micromech. Microeng. 21, 115027 (2011).CrossRef K. Wouters, P. Gijsenbergh, and R. Puers, “Comparison of methods for the mechanical characterization of polymers for MEMS applications,” J. Micromech. Microeng. 21, 115027 (2011).CrossRef
16.
Zurück zum Zitat N. C. Sheth, Y. V. Rathod, P. R. Shenoi, D. D. Shori, R. T. Khode, and A. P. Khadse, “Evaluation of new technique of sterilization using biological indicator,” J. Conservative Dent. 20, 346–350 (2017).CrossRef N. C. Sheth, Y. V. Rathod, P. R. Shenoi, D. D. Shori, R. T. Khode, and A. P. Khadse, “Evaluation of new technique of sterilization using biological indicator,” J. Conservative Dent. 20, 346–350 (2017).CrossRef
17.
Zurück zum Zitat U. Tsvikker, Titanium and Its Alloys (Mir, Moscow, 1979) [in Russian]. U. Tsvikker, Titanium and Its Alloys (Mir, Moscow, 1979) [in Russian].
18.
Zurück zum Zitat D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017).CrossRef D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017).CrossRef
19.
Zurück zum Zitat A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties (VILS–MATI, Moscow, 2009) [in Russian] A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties (VILS–MATI, Moscow, 2009) [in Russian]
20.
Zurück zum Zitat O. P. Shaboldo, Ya. M. Vitorskii, V. V. Sagaradze, N. L. Pecherkina and M. A. Skotnikova, “Formation of the structure and properties of β-type titanium alloy upon thermomechanical treatment,” Phys. Met. Metallogr. 118, 75–80 (2017).CrossRef O. P. Shaboldo, Ya. M. Vitorskii, V. V. Sagaradze, N. L. Pecherkina and M. A. Skotnikova, “Formation of the structure and properties of β-type titanium alloy upon thermomechanical treatment,” Phys. Met. Metallogr. 118, 75–80 (2017).CrossRef
21.
Zurück zum Zitat T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Noraka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, “Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism,” Science 18, 464–467 (2003).CrossRef T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Noraka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, “Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism,” Science 18, 464–467 (2003).CrossRef
22.
Zurück zum Zitat A. G. Illarionov, Yu. N. Loginov, S. I. Stepanov, S. M. Illarionova, and P. S. Radaev, “Variation of the structure-and-phase condition and physical and mechanical properties of cold-deformed leaded brass under heating,” Metalloved. Term. Obr. Mater., No. 4, 39–45 (2019). A. G. Illarionov, Yu. N. Loginov, S. I. Stepanov, S. M. Illarionova, and P. S. Radaev, “Variation of the structure-and-phase condition and physical and mechanical properties of cold-deformed leaded brass under heating,” Metalloved. Term. Obr. Mater., No. 4, 39–45 (2019).
23.
Zurück zum Zitat I. Obinata and K. Nishimura, “On the recrystallization of cold-rolled commercially pure Ti,” J. Inst. Met. 84, 97–101 (1955). I. Obinata and K. Nishimura, “On the recrystallization of cold-rolled commercially pure Ti,” J. Inst. Met. 84, 97–101 (1955).
24.
Zurück zum Zitat P. Zháňal, P. Harcuba, M. Hájek, B. Smola, J. Stráský, J. Šmilauerová, J. Veselý, and M. Janeček, “Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo,” J. Mater. Sci. 53, 837–845 (2018).CrossRef P. Zháňal, P. Harcuba, M. Hájek, B. Smola, J. Stráský, J. Šmilauerová, J. Veselý, and M. Janeček, “Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo,” J. Mater. Sci. 53, 837–845 (2018).CrossRef
25.
Zurück zum Zitat D. L. Moffat and U. R. Kattner, “The stable and metastable Ti-Nb phase diagrams,” Metall. Trans. A 19, 2389–2397 (1988).CrossRef D. L. Moffat and U. R. Kattner, “The stable and metastable Ti-Nb phase diagrams,” Metall. Trans. A 19, 2389–2397 (1988).CrossRef
26.
Zurück zum Zitat Y. Wang, J. Gao, H. Wu, S. Yang, X. Ding, D. Wang, and J. Gao, “Strain glass transition in a multifunctional β-type Ti alloy,” Sci. Rep. 4, 1–5 (2014). Y. Wang, J. Gao, H. Wu, S. Yang, X. Ding, D. Wang, and J. Gao, “Strain glass transition in a multifunctional β-type Ti alloy,” Sci. Rep. 4, 1–5 (2014).
27.
Zurück zum Zitat S. L. Demakov, S. I. Stepanov, A. G. Illarionov and M. A. Ryzhkov, “Thermal-expansion anisotropy of orthorhombic martensite in the two-phase (α + β) titanium alloy,” Phys. Met. Metallogr. 118, 264–271 (2017).CrossRef S. L. Demakov, S. I. Stepanov, A. G. Illarionov and M. A. Ryzhkov, “Thermal-expansion anisotropy of orthorhombic martensite in the two-phase (α + β) titanium alloy,” Phys. Met. Metallogr. 118, 264–271 (2017).CrossRef
28.
Zurück zum Zitat S. G. Glazunov and V. N. Moiseev, StructuralTitanium Allots (Metallurgiya, Moscow, 1974) [in Russian]. S. G. Glazunov and V. N. Moiseev, StructuralTitanium Allots (Metallurgiya, Moscow, 1974) [in Russian].
Metadaten
Titel
Structure, Phase Composition, and Mechanical Properties of Biocompatible Titanium Alloys of Different Types
verfasst von
A. G. Illarionov
A. G. Nezhdanov
S. I. Stepanov
G. Muller-Kamskii
A. A. Popov
Publikationsdatum
01.04.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 4/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20040055

Weitere Artikel der Ausgabe 4/2020

Physics of Metals and Metallography 4/2020 Zur Ausgabe