Skip to main content
Erschienen in: Computational Mechanics 2/2018

14.10.2017 | Original Paper

Structure-preserving time integration of non-isothermal finite viscoelastic continua related to variational formulations of continuum dynamics

verfasst von: Michael Groß, Matthias Bartelt, Peter Betsch

Erschienen in: Computational Mechanics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A structure-preserving time integration scheme is a modified standard time stepping scheme, which fulfills the balance laws of a dynamical problem also in a discrete setting. Hence, such a scheme represents a space-time discretization of a continuum with all of its central properties. This paper deals with a special second-order accurate structure-preserving time integration of thermo-mechanical couplings in a moving continuum, satisfying all discrete thermodynamical balance laws in contrast to the underlying second-order accurate midpoint rule. More accurately, we consider isotropic heat conduction and the Gough–Joule effect in moving continua. The considered time evolution is described by five differential equations with respect to five independent variables, including the entropy field of the continuum. The bodies in the numerical examples are subjected to Dirichlet- or Neumann boundary conditions in the displacement as well as the temperature field. Although this structure-preserving time integrator is based on a time discrete spatially weak finite element formulation, it fulfills the same balance laws as the underlying five differential equations. Namely, in addition to the balances of entropy, linear momentum and angular momentum, also the balances of total energy and Lyapunov’s function are fulfilled in the discrete case.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We do not mention explicitly the process of integration by parts on the ‘blue path’, which is formally necessary but standard, and is definitly not necessary on the ‘red path’.
 
Literatur
1.
Zurück zum Zitat Stuart AM, Humphries AR (1991) Dynamical systems and numerical analysis. Cambridge University Press, CambridgeMATH Stuart AM, Humphries AR (1991) Dynamical systems and numerical analysis. Cambridge University Press, CambridgeMATH
2.
Zurück zum Zitat Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration. Springer, BerlinMATH Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration. Springer, BerlinMATH
3.
Zurück zum Zitat Gonzalez O (2000) Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput Methods Appl Mech Eng 190:1763–1783MathSciNetCrossRefMATH Gonzalez O (2000) Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput Methods Appl Mech Eng 190:1763–1783MathSciNetCrossRefMATH
4.
Zurück zum Zitat Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I. Comput Methods Appl Mech Eng 190:2603–2649CrossRefMATH Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I. Comput Methods Appl Mech Eng 190:2603–2649CrossRefMATH
5.
Zurück zum Zitat Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 10:357–514 Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 10:357–514
6.
Zurück zum Zitat Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics. Part I. Comput Methods Appl Mech Eng 199:1841–1858CrossRefMATH Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics. Part I. Comput Methods Appl Mech Eng 199:1841–1858CrossRefMATH
7.
Zurück zum Zitat Betsch P, Steinmann P (2002) Conservation properties of a time FE method. Part III. Int J Numer Methods Eng 53:2271–2304CrossRefMATH Betsch P, Steinmann P (2002) Conservation properties of a time FE method. Part III. Int J Numer Methods Eng 53:2271–2304CrossRefMATH
8.
Zurück zum Zitat Groß M, Betsch P (2011) Galerkin-based energy–momentum consistent time-stepping algorithms for classical nonlinear thermo-dynamics. Math Comput Simul 82(4):718–770CrossRefMATH Groß M, Betsch P (2011) Galerkin-based energy–momentum consistent time-stepping algorithms for classical nonlinear thermo-dynamics. Math Comput Simul 82(4):718–770CrossRefMATH
9.
Zurück zum Zitat Bauchau OA, Bottasso CL (1999) On the design of energy preserving and decaying schemes for flexible nonlinear multi-body systems. Comput Methods Appl Mech Eng 169:61–79MathSciNetCrossRefMATH Bauchau OA, Bottasso CL (1999) On the design of energy preserving and decaying schemes for flexible nonlinear multi-body systems. Comput Methods Appl Mech Eng 169:61–79MathSciNetCrossRefMATH
10.
Zurück zum Zitat Ober-Blöbaum S, Saake N (2013) Construction and analysis of higher order Galerkin variational integrators. arXiv: 1304.1398 [math.NA] Ober-Blöbaum S, Saake N (2013) Construction and analysis of higher order Galerkin variational integrators. arXiv:​ 1304.​1398 [math.NA]
11.
Zurück zum Zitat Krüger M, Groß M, Betsch P (2016) An energy-entropy-consistent time stepping scheme for nonlinear thermo-viscoelastic continua. ZAMM 96(2):141–178MathSciNetCrossRef Krüger M, Groß M, Betsch P (2016) An energy-entropy-consistent time stepping scheme for nonlinear thermo-viscoelastic continua. ZAMM 96(2):141–178MathSciNetCrossRef
12.
Zurück zum Zitat Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56(6):6633–6655MathSciNetCrossRef Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56(6):6633–6655MathSciNetCrossRef
14.
Zurück zum Zitat Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, ChichesterMATH Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, ChichesterMATH
15.
Zurück zum Zitat Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482CrossRefMATH Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482CrossRefMATH
18.
Zurück zum Zitat Simo JC (1998) Numerical analysis and simulation of plasticity. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol VI. Elsevier, Amsterdam Simo JC (1998) Numerical analysis and simulation of plasticity. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol VI. Elsevier, Amsterdam
19.
20.
Zurück zum Zitat Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry. Springer, New YorkCrossRefMATH Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry. Springer, New YorkCrossRefMATH
21.
Zurück zum Zitat Reese S (2001) Thermomechanische Modellierung gummiartiger Polymerstrukturen. Habilitationsschrift, F 01/4, Institut für Baumechanik und Numerische Mechanik, Universität Hannover Reese S (2001) Thermomechanische Modellierung gummiartiger Polymerstrukturen. Habilitationsschrift, F 01/4, Institut für Baumechanik und Numerische Mechanik, Universität Hannover
22.
Zurück zum Zitat Truesdell C (2012) Rational thermodynamics. Springer, BerlinMATH Truesdell C (2012) Rational thermodynamics. Springer, BerlinMATH
23.
Zurück zum Zitat Kuhl E (2004) Theory and numerics of open system thermodynamics. Lehrstuhl für Technische Mechanik, Technische Universität Kaiserslautern, Habilitationsschrift Kuhl E (2004) Theory and numerics of open system thermodynamics. Lehrstuhl für Technische Mechanik, Technische Universität Kaiserslautern, Habilitationsschrift
24.
25.
26.
Zurück zum Zitat Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208MathSciNetCrossRefMATH Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208MathSciNetCrossRefMATH
27.
Zurück zum Zitat Armero F (2008) Assumed strain finite element methods for conserving temporal integrations in non-linear solid dynamics. Int J Numer Methods Eng 74:1795–1847MathSciNetCrossRefMATH Armero F (2008) Assumed strain finite element methods for conserving temporal integrations in non-linear solid dynamics. Int J Numer Methods Eng 74:1795–1847MathSciNetCrossRefMATH
28.
Zurück zum Zitat Groß M (2009) Higher-order accurate and energy–momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity. Habilitation thesis, Series of the chair for computational mechanics, vol 2, Department of Mechanical Engineering, University of Siegen, urn:nbn:de:hbz:467-3890 Groß M (2009) Higher-order accurate and energy–momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity. Habilitation thesis, Series of the chair for computational mechanics, vol 2, Department of Mechanical Engineering, University of Siegen, urn:nbn:de:hbz:467-3890
29.
Zurück zum Zitat Hughes TJR (2000) The finite element method. Dover, MineolaMATH Hughes TJR (2000) The finite element method. Dover, MineolaMATH
30.
Zurück zum Zitat Krüger M, Groß M, Betsch P (2011) A comparison of structure-preserving integrators for discrete thermoelastic systems. Comput Mech 47(6):701–722MathSciNetCrossRefMATH Krüger M, Groß M, Betsch P (2011) A comparison of structure-preserving integrators for discrete thermoelastic systems. Comput Mech 47(6):701–722MathSciNetCrossRefMATH
31.
Zurück zum Zitat Betsch P, Steinmann P (2000) Inherently energy conserving time finite elements for classical mechanics. J Comput Phys 160:88–116MathSciNetCrossRefMATH Betsch P, Steinmann P (2000) Inherently energy conserving time finite elements for classical mechanics. J Comput Phys 160:88–116MathSciNetCrossRefMATH
32.
Zurück zum Zitat Gonzalez O (1996) Design and analysis of conserving integrators for nonlinear Hamiltonian systems with symmetry. Ph.D. dissertation, SUDAM report no. 96-x, Department of Mechanical Engineering, Stanford University, Stanford California Gonzalez O (1996) Design and analysis of conserving integrators for nonlinear Hamiltonian systems with symmetry. Ph.D. dissertation, SUDAM report no. 96-x, Department of Mechanical Engineering, Stanford University, Stanford California
33.
Zurück zum Zitat Groß M, Dietzsch J (2017) Variational-based energy–momentum schemes of higher-order for elastic fiber-reinforced continua. Comput Methods Appl Mech Eng 320:509–542MathSciNetCrossRef Groß M, Dietzsch J (2017) Variational-based energy–momentum schemes of higher-order for elastic fiber-reinforced continua. Comput Methods Appl Mech Eng 320:509–542MathSciNetCrossRef
34.
Zurück zum Zitat Maugin GA, Kalpakides VK (2002) A Hamiltonian formulation for elasticity and thermoelasticity. J Phys A Math Gen 35:10775–10788MathSciNetCrossRefMATH Maugin GA, Kalpakides VK (2002) A Hamiltonian formulation for elasticity and thermoelasticity. J Phys A Math Gen 35:10775–10788MathSciNetCrossRefMATH
35.
Zurück zum Zitat Greenspan D (1973) Discrete Models. Addison-Wesley, BostonMATH Greenspan D (1973) Discrete Models. Addison-Wesley, BostonMATH
36.
Zurück zum Zitat Rank E, Katz C, Werner H (1983) On the importance of the discrete maximum principle in transient analysis using finite elements. Int J Numer Methods Eng 19(12):1771–1782MathSciNetCrossRefMATH Rank E, Katz C, Werner H (1983) On the importance of the discrete maximum principle in transient analysis using finite elements. Int J Numer Methods Eng 19(12):1771–1782MathSciNetCrossRefMATH
37.
Zurück zum Zitat Goldstein H (1980) Classical mechanics. Addison-Wesley, BostonMATH Goldstein H (1980) Classical mechanics. Addison-Wesley, BostonMATH
38.
Zurück zum Zitat Schröder B, Kuhl D (2015) Small strain plasticity: classical versus multifield formulation. Arch Appl Mech 85(8):1127–1145CrossRefMATH Schröder B, Kuhl D (2015) Small strain plasticity: classical versus multifield formulation. Arch Appl Mech 85(8):1127–1145CrossRefMATH
39.
Zurück zum Zitat Maugin GA (2011) Config Forces. CRC Press, Boca Raton Maugin GA (2011) Config Forces. CRC Press, Boca Raton
40.
Zurück zum Zitat Schlögl T, Leyendecker S (2016) Electrostatic–viscoelastic finite element model of dielectric actuators. Comput Methods Appl Mech Eng 299:421–439MathSciNetCrossRef Schlögl T, Leyendecker S (2016) Electrostatic–viscoelastic finite element model of dielectric actuators. Comput Methods Appl Mech Eng 299:421–439MathSciNetCrossRef
Metadaten
Titel
Structure-preserving time integration of non-isothermal finite viscoelastic continua related to variational formulations of continuum dynamics
verfasst von
Michael Groß
Matthias Bartelt
Peter Betsch
Publikationsdatum
14.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1489-x

Weitere Artikel der Ausgabe 2/2018

Computational Mechanics 2/2018 Zur Ausgabe

Neuer Inhalt