Skip to main content
Erschienen in: Journal of Materials Science 8/2019

14.01.2019 | Polymers

Structure–property relationships of aramid fibers via X-ray scattering and atomic force microscopy

verfasst von: Michael R. Roenbeck, Julia Cline, Vincent Wu, Mehdi Afshari, Steve Kellner, Patrick Martin, Juan David Londono, Laura E. Clinger, David Reichert, Steven R. Lustig, Kenneth E. Strawhecker

Erschienen in: Journal of Materials Science | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Real-space methods of characterizing high-performance fibers’ inherent morphologies will greatly enhance our understanding of the key structural features within fibers and their impacts on mechanical performance. Here, we report on structure–property correlations of two new classes of commercial DuPont Kevlar fibers, termed “K29 sample test” and “K49 sample test,” as well as conventional K29 and K49 fibers.* Through multifrequency atomic force microscope scans of internal fiber surfaces prepared by a focused ion beam notch technique, we directly capture nano- and microstructural features that define the inherent structures of these fibers. Integrating these findings with X-ray scattering experiments, we relate crystallographic and real-space measurements to each other, highlighting how multiscale structural motifs manifest within fibers. By carrying out tensile tests on single fibers drawn from the same tows, we also glean new insights into the structure–property relationships that dictate the mechanical behavior of these fibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Blades H (1975) High modulus, high tenacity poly (p-phenylene terephthalamide) fiber. US Patent 3869430 Blades H (1975) High modulus, high tenacity poly (p-phenylene terephthalamide) fiber. US Patent 3869430
2.
Zurück zum Zitat Dobb MG, Johnson DJ, Saville BP (1977) Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49). J Polym Sci: Polym Phys Edn 15(12):2201–2211 Dobb MG, Johnson DJ, Saville BP (1977) Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49). J Polym Sci: Polym Phys Edn 15(12):2201–2211
3.
Zurück zum Zitat Northolt M (1980) Tensile deformation of poly (p-phenylene terephthalamide) fibres, an experimental and theoretical analysis. Polymer 21(10):1199–1204CrossRef Northolt M (1980) Tensile deformation of poly (p-phenylene terephthalamide) fibres, an experimental and theoretical analysis. Polymer 21(10):1199–1204CrossRef
4.
Zurück zum Zitat Rao Y, Waddon AJ, Farris RJ (2001) Structure–property relation in poly (p-phenylene terephthalamide)(PPTA) fibers. Polymer 42(13):5937–5946CrossRef Rao Y, Waddon AJ, Farris RJ (2001) Structure–property relation in poly (p-phenylene terephthalamide)(PPTA) fibers. Polymer 42(13):5937–5946CrossRef
5.
Zurück zum Zitat Morgan RJ, Pruneda CO, Steele WJ (1983) The relationship between the physical structure and the microscopic deformation and failure processes of poly (p-phenylene terephthalamide) fibers. J Polym Sci, Part B: Polym Phys 21(9):1757–1783 Morgan RJ, Pruneda CO, Steele WJ (1983) The relationship between the physical structure and the microscopic deformation and failure processes of poly (p-phenylene terephthalamide) fibers. J Polym Sci, Part B: Polym Phys 21(9):1757–1783
6.
Zurück zum Zitat Panar M et al (1983) Morphology of poly (p-phenylene terephthalamide) fibers. J Polym Sci: Polym Phys Edn 21(10):1955–1969 Panar M et al (1983) Morphology of poly (p-phenylene terephthalamide) fibers. J Polym Sci: Polym Phys Edn 21(10):1955–1969
7.
Zurück zum Zitat Chatzi E, Urban M, Koenig J (1986) Characterization of Kevlar fiber surfaces using a newly developed infrared photoacoustic technique. In: Macromolecular symposia. Wiley Online Library Chatzi E, Urban M, Koenig J (1986) Characterization of Kevlar fiber surfaces using a newly developed infrared photoacoustic technique. In: Macromolecular symposia. Wiley Online Library
8.
Zurück zum Zitat Allen S, Roche E (1989) Deformation behaviour of Kevlar aramid fibres. Polymer 30(6):996–1003CrossRef Allen S, Roche E (1989) Deformation behaviour of Kevlar aramid fibres. Polymer 30(6):996–1003CrossRef
10.
Zurück zum Zitat Northolt M, Van Aartsen J (1977) Chain orientation distribution and elastic properties of poly (p‐phenylene terephthalamide), a “rigid rod” polymer. In: Journal of Polymer Science: Polymer Symposia, Wiley Online Library Northolt M, Van Aartsen J (1977) Chain orientation distribution and elastic properties of poly (p‐phenylene terephthalamide), a “rigid rod” polymer. In: Journal of Polymer Science: Polymer Symposia, Wiley Online Library
11.
Zurück zum Zitat Krause S, Vezie D, Adams W (1989) Straightening of pleated sheet structure in fibres of poly (p-phenyleneterephthalamide)-Kevlar 149. Polym Commun 30(1):10–13 Krause S, Vezie D, Adams W (1989) Straightening of pleated sheet structure in fibres of poly (p-phenyleneterephthalamide)-Kevlar 149. Polym Commun 30(1):10–13
12.
Zurück zum Zitat Stockdale TA et al (2016) A rapid FIB-notch technique for characterizing the internal morphology of high-performance fibers. Mater Lett 176:173–176CrossRef Stockdale TA et al (2016) A rapid FIB-notch technique for characterizing the internal morphology of high-performance fibers. Mater Lett 176:173–176CrossRef
13.
Zurück zum Zitat Strawhecker KE et al (2016) Interior morphology of high-performance polyethylene fibers revealed by modulus mapping. Polymer 103:224–232CrossRef Strawhecker KE et al (2016) Interior morphology of high-performance polyethylene fibers revealed by modulus mapping. Polymer 103:224–232CrossRef
14.
Zurück zum Zitat Roenbeck MR et al (2017) Probing the internal structures of Kevlar fibers and their impacts on mechanical performance. Polymer 128(5):200–210CrossRef Roenbeck MR et al (2017) Probing the internal structures of Kevlar fibers and their impacts on mechanical performance. Polymer 128(5):200–210CrossRef
15.
Zurück zum Zitat Cline J, Wu V, Moy P (2018) Assessment of the Tensile properties for single fibers. US Army Research Laboratory, p 1–40 Cline J, Wu V, Moy P (2018) Assessment of the Tensile properties for single fibers. US Army Research Laboratory, p 1–40
16.
Zurück zum Zitat Wagner HD, Phoenix SL, Schwartz P (1984) A study of statistical variability in the strength of single aramid filaments. J Compos Mater 18(4):312–338CrossRef Wagner HD, Phoenix SL, Schwartz P (1984) A study of statistical variability in the strength of single aramid filaments. J Compos Mater 18(4):312–338CrossRef
17.
Zurück zum Zitat Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217CrossRef Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217CrossRef
18.
Zurück zum Zitat Garcia R, Proksch R (2013) Nanomechanical mapping of soft matter by bimodal force microscopy. Eur Polymer J 49(8):1897–1906CrossRef Garcia R, Proksch R (2013) Nanomechanical mapping of soft matter by bimodal force microscopy. Eur Polymer J 49(8):1897–1906CrossRef
19.
Zurück zum Zitat Herruzo ET, Perrino AP, Garcia R (2014) Fast nanomechanical spectroscopy of soft matter. Nat Commun 5:3126CrossRef Herruzo ET, Perrino AP, Garcia R (2014) Fast nanomechanical spectroscopy of soft matter. Nat Commun 5:3126CrossRef
20.
Zurück zum Zitat Labuda A et al (2016) Generalized Hertz model for bimodal nanomechanical mapping. Beilstein J Nanotechnol 7(1):970–982CrossRef Labuda A et al (2016) Generalized Hertz model for bimodal nanomechanical mapping. Beilstein J Nanotechnol 7(1):970–982CrossRef
21.
Zurück zum Zitat Kocun M et al (2017) Fast, high resolution, and wide modulus range nanomechanical mapping with bimodal tapping mode. ACS Nano 11(10):10097–10105CrossRef Kocun M et al (2017) Fast, high resolution, and wide modulus range nanomechanical mapping with bimodal tapping mode. ACS Nano 11(10):10097–10105CrossRef
22.
Zurück zum Zitat Rao Y, Waddon AJ, Farris RJ (2001) The evolution of structure and properties in poly (p-phenylene terephthalamide) fibers. Polymer 42(13):5925–5935CrossRef Rao Y, Waddon AJ, Farris RJ (2001) The evolution of structure and properties in poly (p-phenylene terephthalamide) fibers. Polymer 42(13):5925–5935CrossRef
23.
Zurück zum Zitat Wu T-M, Blackwell J (1996) Comparison of the axial correlation lengths and paracrystalline distortion for Technora and Kevlar aromatic polyamide fibers. Macromolecules 29(17):5621–5627CrossRef Wu T-M, Blackwell J (1996) Comparison of the axial correlation lengths and paracrystalline distortion for Technora and Kevlar aromatic polyamide fibers. Macromolecules 29(17):5621–5627CrossRef
24.
Zurück zum Zitat Naito K (2013) Tensile properties and weibull modulus of some high-performance polymeric fibers. J Appl Polym Sci 128(2):1185–1192CrossRef Naito K (2013) Tensile properties and weibull modulus of some high-performance polymeric fibers. J Appl Polym Sci 128(2):1185–1192CrossRef
25.
Zurück zum Zitat Riekel C et al (1999) X-ray microdiffraction study of chain orientation in poly (p-phenylene terephthalamide). Macromolecules 32(23):7859–7865CrossRef Riekel C et al (1999) X-ray microdiffraction study of chain orientation in poly (p-phenylene terephthalamide). Macromolecules 32(23):7859–7865CrossRef
26.
Zurück zum Zitat Graham JF et al (2000) Spatially resolved nanomechanical properties of Kevlar fibers. Polymer 41(12):4761–4764CrossRef Graham JF et al (2000) Spatially resolved nanomechanical properties of Kevlar fibers. Polymer 41(12):4761–4764CrossRef
27.
Zurück zum Zitat McAllister QP, Gillespie JW, VanLandingham MR (2012) Evaluation of the three-dimensional properties of Kevlar across length scales. J Mater Res 27(14):1824–1837CrossRef McAllister QP, Gillespie JW, VanLandingham MR (2012) Evaluation of the three-dimensional properties of Kevlar across length scales. J Mater Res 27(14):1824–1837CrossRef
29.
Zurück zum Zitat Nakamae K, Nishino T, Airu X (1992) Poisson’s ratio of the crystal lattice of poly (p-phenylene terephthalamide) by X-ray diffraction. Polymer 33(23):4898–4900CrossRef Nakamae K, Nishino T, Airu X (1992) Poisson’s ratio of the crystal lattice of poly (p-phenylene terephthalamide) by X-ray diffraction. Polymer 33(23):4898–4900CrossRef
30.
Zurück zum Zitat Dobb MG et al (1979) Microvoids in aramid-type fibrous polymers. Polymer 20(10):1284–1288CrossRef Dobb MG et al (1979) Microvoids in aramid-type fibrous polymers. Polymer 20(10):1284–1288CrossRef
31.
Zurück zum Zitat Dobb MG, Johnson DJ, Saville BP (1979) Structural aspects of high modulus aromatic polyamide fibres. Philos Trans R Soc Lond A: Math Phys Eng Sci 294(1411):483–485CrossRef Dobb MG, Johnson DJ, Saville BP (1979) Structural aspects of high modulus aromatic polyamide fibres. Philos Trans R Soc Lond A: Math Phys Eng Sci 294(1411):483–485CrossRef
32.
Zurück zum Zitat Northolt M, Hout R (1985) Elastic extension of an oriented crystalline fibre. Polymer 26(2):310–316CrossRef Northolt M, Hout R (1985) Elastic extension of an oriented crystalline fibre. Polymer 26(2):310–316CrossRef
33.
Zurück zum Zitat Allen S (1988) Stress-coupling phenomena in anisotropic fibres. Polymer 29(6):1091–1094CrossRef Allen S (1988) Stress-coupling phenomena in anisotropic fibres. Polymer 29(6):1091–1094CrossRef
36.
Zurück zum Zitat Roche E et al (1985) Light diffraction effects from Kevlar aramid fibers. J Macromol Sci Phys 24(4):141–157CrossRef Roche E et al (1985) Light diffraction effects from Kevlar aramid fibers. J Macromol Sci Phys 24(4):141–157CrossRef
37.
Zurück zum Zitat Rogozinsky A, Bazhenov S (1992) Effect of creep on the Young’s modulus of aramid fibres. Polymer 33(7):1391–1398CrossRef Rogozinsky A, Bazhenov S (1992) Effect of creep on the Young’s modulus of aramid fibres. Polymer 33(7):1391–1398CrossRef
38.
Zurück zum Zitat Beese AM et al (2014) Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships. ACS Nano 8(11):11454–11466CrossRef Beese AM et al (2014) Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships. ACS Nano 8(11):11454–11466CrossRef
39.
Zurück zum Zitat Crist B (1995) The ultimate strength and stiffness of polymers. Annu Rev Mater Sci 25(1):295–323CrossRef Crist B (1995) The ultimate strength and stiffness of polymers. Annu Rev Mater Sci 25(1):295–323CrossRef
41.
Zurück zum Zitat Li S, McGhie A, Tang S (1994) Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy. J Vac Sci Technol A: Vac Surf Films 12(4):1891–1894CrossRef Li S, McGhie A, Tang S (1994) Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy. J Vac Sci Technol A: Vac Surf Films 12(4):1891–1894CrossRef
42.
Zurück zum Zitat Şahin K et al (2018) Limiting role of crystalline domain orientation on the modulus and strength of aramid fibers. Polymer 140:96–106CrossRef Şahin K et al (2018) Limiting role of crystalline domain orientation on the modulus and strength of aramid fibers. Polymer 140:96–106CrossRef
Metadaten
Titel
Structure–property relationships of aramid fibers via X-ray scattering and atomic force microscopy
verfasst von
Michael R. Roenbeck
Julia Cline
Vincent Wu
Mehdi Afshari
Steve Kellner
Patrick Martin
Juan David Londono
Laura E. Clinger
David Reichert
Steven R. Lustig
Kenneth E. Strawhecker
Publikationsdatum
14.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03282-x

Weitere Artikel der Ausgabe 8/2019

Journal of Materials Science 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.