Skip to main content

2018 | OriginalPaper | Buchkapitel

Structured Deep Generative Model of fMRI Signals for Mental Disorder Diagnosis

verfasst von : Takashi Matsubara, Tetsuo Tashiro, Kuniaki Uehara

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning-based accurate diagnosis of psychiatric disorders is expected to find their biomarkers and to evaluate the treatments. For this purpose, neuroimaging datasets have required special procedures including feature-selections and dimensional-reductions since they are still composed of a limited number of high-dimensional samples. Recent studies reported a certain success by applying generative models to fMRI data. Generative models can classify small datasets more accurately than discriminative models as long as their assumptions are appropriate. Leveraging our prior knowledge of fMRI signal and the flexibility of deep neural networks, we propose a structured deep generative model, which takes into account fMRI images, disorder, and individual variability. The proposed model estimates the subjects’ conditions more accurately than existing diagnostic procedures, general discriminative models, and recently-proposed generative models. Also, it identifies brain regions related to the disorders.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sejnowski, T.J., et al.: Putting big data to good use in neuroscience. Nat. Neurosci. 17(11), 1440–1441 (2014)CrossRef Sejnowski, T.J., et al.: Putting big data to good use in neuroscience. Nat. Neurosci. 17(11), 1440–1441 (2014)CrossRef
2.
Zurück zum Zitat Group, B.D.W.: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinic. Pharmacol. Ther. 69(3), 89–95 (2001)CrossRef Group, B.D.W.: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinic. Pharmacol. Ther. 69(3), 89–95 (2001)CrossRef
3.
Zurück zum Zitat Shen, H., et al.: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage 49(4), 3110–3121 (2010)CrossRef Shen, H., et al.: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage 49(4), 3110–3121 (2010)CrossRef
4.
Zurück zum Zitat Castro, E., et al.: Deep independence network analysis of structural brain imaging: application to schizophrenia. IEEE Trans. Med. Imaging 35(7), 1729–1740 (2016)CrossRef Castro, E., et al.: Deep independence network analysis of structural brain imaging: application to schizophrenia. IEEE Trans. Med. Imaging 35(7), 1729–1740 (2016)CrossRef
5.
Zurück zum Zitat Yahata, N., et al.: A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat. Commun. 7(7), 11254 (2016)CrossRef Yahata, N., et al.: A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat. Commun. 7(7), 11254 (2016)CrossRef
6.
Zurück zum Zitat Suk, H.I., et al.: State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage 129, 292–307 (2016)CrossRef Suk, H.I., et al.: State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage 129, 292–307 (2016)CrossRef
7.
Zurück zum Zitat Chen, P.H., et al.: A Reduced-Dimension fMRI Shared Response Model. In: NIPS. (2015) 460–468 Chen, P.H., et al.: A Reduced-Dimension fMRI Shared Response Model. In: NIPS. (2015) 460–468
8.
Zurück zum Zitat Tashiro, T., et al.: Deep neural generative model for fMRI image based diagnosis of mental disorder. In: NOLTA (2017) Tashiro, T., et al.: Deep neural generative model for fMRI image based diagnosis of mental disorder. In: NOLTA (2017)
9.
Zurück zum Zitat Lasserre, J., et al.: Principled hybrids of generative and discriminative models. In: CVPR, pp. 87–94 (2006) Lasserre, J., et al.: Principled hybrids of generative and discriminative models. In: CVPR, pp. 87–94 (2006)
10.
Zurück zum Zitat Abraham, A., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage 147, 736–745 (2017)CrossRef Abraham, A., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage 147, 736–745 (2017)CrossRef
11.
Zurück zum Zitat Schmidhuber, J.: Deep learning in neural networks: an overview. Neur. Netw. 61, 85–117 (2015)CrossRef Schmidhuber, J.: Deep learning in neural networks: an overview. Neur. Netw. 61, 85–117 (2015)CrossRef
12.
Zurück zum Zitat Liu, S., et al.: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62(4), 1132–1140 (2015)CrossRef Liu, S., et al.: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62(4), 1132–1140 (2015)CrossRef
13.
Zurück zum Zitat Kingma, D.P., et al.: Semi-supervised learning with deep generative models. In: NIPS, pp. 3581–3589 (2014) Kingma, D.P., et al.: Semi-supervised learning with deep generative models. In: NIPS, pp. 3581–3589 (2014)
14.
Zurück zum Zitat Maaløe, L., et al.: Auxiliary deep generative models. In: ICML, vol. 48, pp. 1445–1453 (2015) Maaløe, L., et al.: Auxiliary deep generative models. In: ICML, vol. 48, pp. 1445–1453 (2015)
15.
Zurück zum Zitat Pereira, F., et al.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45, S199–S209 (2009)CrossRef Pereira, F., et al.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45, S199–S209 (2009)CrossRef
16.
Zurück zum Zitat Dvornek, N.C., et al.: Identifying autism from resting-state fMRI using long short-term memory networks. MLM I, 362–370 (2017) Dvornek, N.C., et al.: Identifying autism from resting-state fMRI using long short-term memory networks. MLM I, 362–370 (2017)
17.
Zurück zum Zitat Ba, J.L., et al.: Layer normalization, pp. 1–14. arXiv (2016) Ba, J.L., et al.: Layer normalization, pp. 1–14. arXiv (2016)
18.
Zurück zum Zitat Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010)
19.
Zurück zum Zitat Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15, 1929–1958 (2014)MathSciNetMATH Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15, 1929–1958 (2014)MathSciNetMATH
20.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR, pp. 1–15 (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR, pp. 1–15 (2015)
21.
Zurück zum Zitat Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)CrossRef Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)CrossRef
22.
Zurück zum Zitat Andreasen, N.C., Pierson, R.: The role of the cerebellum in schizophrenia. Biol. Psychiatry 64(2), 81–88 (2008)CrossRef Andreasen, N.C., Pierson, R.: The role of the cerebellum in schizophrenia. Biol. Psychiatry 64(2), 81–88 (2008)CrossRef
Metadaten
Titel
Structured Deep Generative Model of fMRI Signals for Mental Disorder Diagnosis
verfasst von
Takashi Matsubara
Tetsuo Tashiro
Kuniaki Uehara
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00931-1_30